

Learning	MCollective
Jo	Rhett

Learning	MCollective
by	Jo	Rhett

Copyright	©	2014	Jo	Rhett.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editors:	Courtney	Nash	and	Brian	Anderson
Production	Editor:	Kara	Ebrahim
Copyeditor:	Jasmine	Kwityn
Proofreader:	Amanda	Kersey
Indexer:	Judy	McConville
Interior	Designer:	David	Futato
Cover	Designer:	Ellie	Volckhausen
Illustrator:	Rebecca	Demarest
August	2014:	First	Edition

http://safaribooksonline.com/?portal=oreilly

Revision	History	for	the	First	Edition
2014-08-11:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491945674	for	release	details.

Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O’Reilly	logo	are	registered
trademarks	of	O’Reilly	Media,	Inc.	Learning	MCollective,	the	image	of	English	Leicester
sheep,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	O’Reilly
Media,	Inc.,	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	in	caps	or
initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher	and
author	assume	no	responsibility	for	errors	or	omissions,	or	for	damages	resulting	from	the
use	of	the	information	contained	herein.

978-1-491-94567-4

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491945674

Preface
This	book	will	teach	you	to	install	and	use	the	Marionette	Collective,	hereafter	referred	to
as	MCollective.	It	will	outline	how	MCollective	works	and	how	MCollective’s	design
provides	value	to	you.	You’ll	learn	how	to	seamlessly	orchestrate	change	on	thousands	of
nodes	worldwide	or	on	a	handful	of	nodes	with	a	specific	characteristic	just	as	easily.

This	book	provides	specific	instruction	on	how	to	use	configuration	management	tools
like	Puppet	and	Chef	to	deploy	MCollective.	It	covers	how	MCollective	can	manipulate
the	Puppet	and	Chef	agents	and	use	data	provided	by	them.

Who	This	Book	Is	For
This	book	is	primarily	aimed	at	system	administrators	and	operations	or	DevOps
engineers.	If	you	are	responsible	for	development	or	production	nodes,	this	book	will
provide	you	with	useful	tools	to	make	your	job	easier	than	ever	before.	If	you	are	using
Puppet	or	Chef	to	manage	your	nodes,	you’re	going	to	learn	how	MCollective	snaps	into
your	existing	configuration	management	to	give	you	instant	control	of	your	managed
nodes.	Within	a	month,	you’ll	wonder	how	you	ever	got	along	without	it.

No	matter	what	you	call	yourself,	if	you	feel	that	you	spend	too	much	time	managing
computers,	then	this	book	is	for	you.	You’d	like	to	get	it	done	faster	so	you	can	focus	on
something	else.	You’d	like	to	do	it	more	consistently,	so	that	you	don’t	have	to	chase
down	one-off	problems	in	your	reports.	Or	you’ve	got	some	new	demands	that	you’re
looking	for	a	way	to	solve.	If	any	of	these	statements	fit,	you	will	find	MCollective	to	be
one	of	the	best	tools	in	your	toolbox.

What	to	Expect	from	Me
This	book	will	not	be	a	tome	filled	with	reference	material	irrelevant	to	the	day-to-day
system	administrator	—	exactly	the	opposite.	Throughout	this	book,	we	will	never	stray
from	one	simple	goal:	we	focus	all	our	efforts	on	how	MCollective	can	help	you	do
something	faster	or	better	than	ever	before.

This	book	will	never	tell	you	to	run	a	script	and	not	tell	you	what	it	does,	or	why.	I	hate
modeling	systems	to	determine	what	an	installation	script	did,	and	I	won’t	do	this	to	you.
In	this	book,	you	will	build	up	the	entire	installation	by	hand.	You’ll	know	where	every
configuration	file	lives.	You’ll	learn	every	configuration	parameter	and	what	it	means.

And	yes,	then	you	will	learn	the	Puppet	modules	and	Chef	cookbooks	you	can	use	to
automate	deployment	seamlessly	throughout	your	environment.

What	You	Will	Need
You	may	use	any	modern	Linux,	Unix,	Mac,	or	Windows	system	and	successfully	follow
the	hands-on	tutorials	in	this	book.

Although	we’ll	introduce	a	web	client	for	MCollective,	the	majority	of	the	process	of
configuring	and	enabling	MCollective	and	utilization	of	client	apps	will	be	performed
through	the	command	line.

A	beginner	to	system	administration	can	follow	every	tutorial	in	this	book.	Any
experience	with	scripts,	coding,	or	configuration	management	will	enhance	what	you	can
get	out	of	this	book,	as	we	will	spend	some	time	documenting	how	MCollective	can
utilize	and	enhance	each	of	those.

Part	III	documents	how	to	build	custom	plugins	for	MCollective	in	the	Ruby	language.
Ruby	programmers	will	be	able	to	utilize	this	immediately,	while	others	may	need
reference	materials	—	such	as	Michael	Fitzgerald’s	Learning	Ruby	(O’Reilly)	—	as	they
add	more	features	to	the	working	examples	provided	here.

http://shop.oreilly.com/product/9780596529864.do

What	You’ll	Find	in	This	Book
Chapter	1	discusses	what	MCollective	does,	how	it	works,	and	how	it	can	be	used	to
orchestrate	change	on	your	systems	faster	and	easier	than	you	could	have	imagined.	Learn
how	MCollective	is	different	from	control	systems	that	loop	through	each	target	and	how
true	parallel	execution	can	benefit	your	environment.

The	remainder	of	Part	I	will	focus	on	getting	you	up	and	running	with	a	working
MCollective	installation.	You	will	learn	the	components	that	make	up	the	MCollective
infrastructure.	You’ll	install	and	configure	each	in	a	manner	suitable	for	your	specific
environment.

This	won’t	be	a	test	environment	for	training	that	doesn’t	match	your	real	concerns;
instead,	you’ll	perform	real	operations	on	hosts	that	match	your	production	environment.
You’ll	see	how	easy	it	is	to	deploy	MCollective	and	exactly	how	powerful	the	tools	it
provides	are.

Part	II	takes	you	on	a	nuts-and-bolts	tour	inside	MCollective’s	architecture,	backbone,
transport,	and	security	controls.	You’ll	learn	about	using	a	network	of	brokers	to	resolve
multisite	or	redundancy	requirements.	You’ll	learn	how	to	create	and	use	collectives	to
handle	thousands	of	MCollective	agents	spread	around	the	world.	After	finishing	this
section,	you’ll	be	able	to	fine-tune	MCollective	for	your	exact	environment:	small	but
globally	diverse,	immense	in	scale	but	localized,	or	a	combination	of	both.

MCollective	has	an	active	developer	and	user	community.	“Finding	Community	Plugins”
directs	you	to	online	repositories	of	clients	and	agents	built	by	others,	as	well	as	concrete
examples	of	how	to	use	others’	plugins	in	your	environment.

In	Part	III,	you	will	create	your	own	server	and	client	plugins	to	perform	any	action	you
can	conceive	of.	You’ll	learn	how	to	create	application	clients	and	how	to	create	listeners
to	collect	registration	details	from	the	agent	systems.	Best	of	all,	the	secrets	of	collecting
and	processing	responses	using	a	directed	reply	will	allow	you	to	create	self-healing
systems.

How	to	Use	This	Book
This	book	provides	explicit	instructions	for	configuring	and	using	MCollective	from	the
command	line	without	the	use	of	an	external	tools.

The	book	documents	and	utilizes	a	Puppet	module	that	can	implement	and	control	every
feature	of	MCollective	documented	in	this	book.	In	Part	II,	every	configuration	option	is
documented	for	both	standalone	and	Puppet	configuration.

The	book	documents	a	Chef	cookbook	that	can	be	used	to	maintain	MCollective	and	gives
MCollective	the	ability	to	manage	the	Chef	agent.

If	you	use	Salt,	Cfengine,	or	any	other	configuration-management	system,	the	instructions
here	can	be	used	to	deploy	MCollective.	You	will	find	it	easy	to	create	configuration
policies	from	the	examples	in	this	book.	The	server	plugin	provided	in	Part	III,	along	with
the	section	about	how	to	interact	with	external	commands,	could	be	easily	adjusted	to
control	the	management	agent	on	each	node.

IPv6	Ready
Every	example	with	IP	addresses	will	include	both	IPv4	and	IPv6	statements.	If	you’re
only	using	one	of	these	protocols,	you	can	ignore	the	other.	MCollective	will	happily	use
any	combination	of	them.	More	details	about	complex	IPv6	setups	will	be	covered	in
“IPv6	Dual-Stack	Environments”.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

Tip

This	element	signifies	a	tip	or	suggestion.

Note

This	element	signifies	a	general	note.

Warning

This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/jorhett/learning-mcollective.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Learning	MCollective	by	Jo	Rhett	(O’Reilly).
Copyright	2014	Jo	Rhett,	978-1-491-94567-4.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/jorhett/learning-mcollective
mailto:permissions@oreilly.com

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com/?portal=oreilly
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international	or	local)
707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/learn-mcollective.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/learn-mcollective
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I	owe	significant	gratitude	to	R.I.	Pienaar,	who	created	MCollective	and	continues	to
provide	valuable	assistance	on	support	channels.	This	book	would	never	have	been
possible	without	his	direct	and	indirect	assistance.

I’d	like	to	thank	Richard	Clamp	and	Peter	Loubser,	who	provide	the	visible	support	and
ongoing	development	from	Puppet	Labs.

The	Chef	portions	of	this	book	wouldn’t	have	been	possible	without	the	ongoing
development	of	the	MCollective	Cookbook	by	Zac	Stevens.	He	and	Mischa	Taylor	of
Chef	both	provided	invaluable	assistance	in	their	personal	time.

I	owe	a	drink	and	much	thanks	to	the	many	people	who	provided	input	and	feedback	on
the	book	during	the	writing	process,	including	but	definitely	not	limited	to	the	technical
reviewers,	Ryan	Dill	(StubHub)	and	Jennifer	Davis	(Chef).

And	finally,	I’d	like	to	thank	my	O’Reilly	editors,	Courtney	Nash	and	Brian	Anderson,
who	gave	me	excellent	guidance	on	the	book	and	were	a	pleasure	to	work	with	throughout
the	project.

Part	I.	Getting	Started
We	will	start	this	part	with	an	overview	of	what	MCollective	does,	how	it	works,	and	how
it	can	be	used	to	orchestrate	change.	We’ll	discuss	how	MCollective	differs	from	control
systems	that	loop	through	each	target,	and	how	true	parallel	execution	can	benefit	your
environment.

Sounds	a	bit	boring,	huh?	Take	a	moment	and	enjoy	it,	because	from	that	point	onward,
you’re	going	to	be	operating	live.	It’s	all	hands-on	from	here.

You’ll	perform	a	real	installation	of	MCollective	servers	and	clients	in	your	environment.
No	demo	system,	no	tiny	configuration	that	doesn’t	match	to	your	needs.	You’ll	build	a
working	MCollective	installation	and	test	it	out	for	your	exact	needs.	You’ll	use	the	client
program	to	make	live	but	nonoperational	calls	that	are	specific	and	unique	to	your	own
servers.

I’ll	cover	network	and	infrastructure	requirements	for	MCollective	and	how	to	confirm
that	each	is	configured	properly.	You’ll	get	in-depth	instruction	on	common	installation
problems	and	learn	to	fix	these	and	related	issues	on	your	own.

You	can	use	configuration-management	tools	to	install	and	configure	MCollective.	We’ll
introduce	a	companion	Puppet	module	that	is	capable	of	deploying	globally	with	minimal
configuration.	If	you	use	Puppet	or	Chef,	you’ll	install	an	MCollective	agent	to	control	it.
Puppet	and	Chef	agents	will	stop	being	something	that	runs	periodically	and	instead
become	interactive	resources	you	can	utilize	for	immediate	change.	All	this	in	just	Part	I
of	the	book!

Chapter	1.	Introduction

What	Is	MCollective?
MCollective	provides	a	framework	for	parallel	job	execution.	It	is	commonly	used	to
orchestrate	change	across	clusters	of	servers	in	near	real	time.	It	is	not	entirely	inaccurate
to	imagine	the	classic	marionette	controller	with	puppets	dancing	on	strings.	(Yes	it’s	a
pun,	but	it	is	more	apt	than	you	may	realize.)

MCollective	is	an	adjunct	tool	in	your	toolbox	that	cooperates	and	enhances	the
capabilities	of	configuration	management	tools	like	Puppet,	Chef,	and	Salt.	Whereas	these
tools	analyze	and	act	to	ensure	complete	configuration	consistency,	MCollective
orchestrates	specific	and	often	singular	actions	across	systems	significantly	faster.

Let’s	talk	about	the	difference	between	MCollective	and	using	Chef,	Puppet,	Capistrano,
Salt	Overstack,	or	hand-built	tools	for	orchestration.	You	may	have	used	a	parallel
execution	command	like	pssh	before.	You	may	have	built	or	improved	one	yourself.	And
if	you	have,	you’re	familiar	with	their	limitations,	which	include	any	or	all	of	the
following:	

Loops	through	systems	in	order,	processing	a	few	at	a	time
Simplistic	(or	overly	complex)	authentication	mechanisms
Requires	customization	for	each	alternative	environment
Unable	to	respond	to	deviations	in	response
Too	easy	to	overlook	fatal	error	messages	output	to	the	screen
Doesn’t	support	or	extend	existing	management	tools

MCollective	differs	from	these	tools	in	a	wide	variety	of	ways:

Uses	a	masterless	environment	that	allows	parallel	execution	on	thousands	of	systems
Allows	for	custom	authentication	and	authorization	mechanisms
Handles	different	platforms,	architectures,	and	local	environments	transparently
Returns	full	data	sets	as	result	codes,	allowing	intelligent	response
Directs	results	to	a	processor	that	takes	action	on	responses
Integrates	cleanly	with	configuration	management	tools	like	Puppet	and	Chef

Let’s	talk	about	how	MCollective’s	design	makes	this	possible.

Why	Parallel	Execution?
All	of	us	have	spent	time	trying	to	make	something	happen	at	the	same	time	on	a	number
of	systems.	How	many	times	have	you	done	something	like	this?

$	for	host	in	bunch	of	hosts

		do

					scp	config-file	$host:/some/path

					ssh	$host	"service	apache	restart"

		done

You	tell	yourself	that	this	is	happening	all	at	once,	but	you	know	better.	Even	with	more
complex	parallel	execution	processors	like	pssh,	ClusterSSH,	or	Fabric,	the	sequential
ordering	ensures	a	delay	that	creates	drift	between	hosts.

If	you	have	more	than	a	few	hosts,	the	output	from	the	commands	scrolls	off	the	screen.
Did	you	notice	that	the	15th	host	command	failed?	The	better	parallel	SSH	processors	will
keep	the	output	from	each	host,	but	you	need	to	examine	it	for	errors.	None	of	them	can
identify	an	error	in	the	middle	of	a	multicommand	sequence	and	bring	it	to	your	attention.

When	it’s	time	to	do	something	on	a	lot	of	hosts,	you	want	it	to	happen	fast,	and	you	need
to	know	that	it	succeeded.

Note

Puppet	(or	Chef,	Salt,	etc.)	users	might	want	to	stand	up	right	now	to	say,	“But	I	can	do
this!	My	configuration	agent	can	ensure	that	these	things	happen	on	a	whole	bunch	of
systems	all	at	once!”	

You’re	right,	Puppet/Chef/etc.	are	great	tools	for	making	changes	on	systems	and	ensuring
that	those	changes	happen.	But	they	don’t	make	this	happen	on	many	systems	at	the	same
time.	Each	agent	pulls	from	the	server	periodically,	allowing	the	server	to	process	a	few	at
a	time.	The	agents	receive	their	configuration	changes	spread	out	over	time	and	then
combine	many	different	inputs	to	produce	a	consistent	configuration.	This	resolution
process	usually	takes	at	least	30	seconds	and	often	many	minutes.

In	very	few	environments	could	every	configuration	management	agent	get	a	catalog	from
the	server	and	execute	it	at	the	same	moment.	Additionally,	each	agent	would	take
differing	times	to	process	their	catalogs.	MCollective	is	the	perfect	complement	for
configuration	management	agents,	designed	specifically	to	orchestrate	actions	quickly
across	many	nodes.

How	MCollective	Works
MCollective	was	designed	from	the	ground	up	to	achieve	true	parallel	execution	with
consistent	and	repeatable	results.	MCollective	avoids	the	use	of	a	centralized	master	for
command	and	control,	thus	avoiding	centralized	resource	problems.	It	also	doesn’t	reach
out	to	the	clients	in	an	ordered	loop,	thus	avoiding	drift	between	each	of	the	systems.

MCollective	uses	publish/subscribe	middleware	to	transport	requests	between	clients	and
servers.	Controlled	nodes	run	an	application	server	named	mcollectived*.	This	server
subscribes	to	message	topics.	Clients	are	applications	that	publish	requests	to	the	message
topics.	The	publish	and	subscribe	operations	are	done	through	persistent	connections	to	a
middleware	broker.

The	mcollectived	server	registers	with	the	middleware	broker	and	remains	in	a	listening
or	IDLE	state.	Whenever	a	client	sends	a	request	to	the	middleware,	each	server	receives
and	evaluates	the	request	immediately	and	independently.	mcollectived	validates	the
request	and	then	hands	it	off	to	an	agent	to	process	the	request.	The	agent	processes	the
request	and	sends	the	reply	back.	All	resources	consumed	are	local	to	the	node	without
any	pull	from	or	push	to	a	centralized	resource,	like	a	Puppet	master	or	Chef	server.

In	this	model,	you	can	have	a	command	execute	on	tens,	hundreds,	or	thousands	of	nodes
at	exactly	the	same	time.	This	publish/subscribe	infrastructure	delivers	a	scalable	and	fast
parallel	execution	environment.	The	model	is	illustrated	in	Figure	1-1.

Figure	1-1.	The	one-to-many	publishing	model	used	by	MCollective

Now	you	might	be	thinking	to	yourself,	“What	if	I	only	want	the	command	executed	on	a
subset	of	nodes?”	MCollective	provides	a	rich	language	for	describing	which	nodes
should	execute	the	commands.	You	can	send	filters	based	on	hostname,	operating	system,
packages	installed,	processes	running,	and	many	other	criteria.	Best	of	all,	new	criteria
custom	to	your	environment	will	be	available	when	you	create	your	own	agent.

Is	This	Like	Multicast	IP?
If	you	are	familiar	with	IP	networking	and	are	thinking	to	yourself	that	this	looks	like
multicast,	then	you	are	correct	—	it	shares	a	lot	of	the	same	benefits.	The	sending	client
submits	a	single	message,	thus	consuming	very	few	resources.	Each	node	that	receives	the
message	determines	if	the	message	applies	to	itself	and	either	acts	on	or	discards	the
message.	Like	multicast,	IP	latency	is	the	only	factor	that	influences	drift	between	nodes
around	the	world.

Why	Use	MCollective
As	we	have	already	discussed,	MCollective	provides	an	infrastructure	designed	for
orchestrating	change	on	large	numbers	of	systems	simultaneously.	Here	are	a	few	reasons
to	use	it:

MCollective	uses	decentralized	publish/subscribe	middleware	to	avoid	the	resource
problems	associated	with	centralized	master/slave	environments.
MCollective	allows	you	to	filter	operations	based	on	customizable	criteria	—	not	just
hostname,	operating	system,	or	other	common	criteria,	but	anything	that	can	be	defined
in	a	custom	module.
MCollective	agents	implement	host-specific	routines	internally,	allowing	you	to	issue
the	same	command	to	different	operating	systems	without	being	concerned	about	the
differences	between	them.
MCollective	agents	report	back	success,	failure,	and	specific	return	codes	or	data	types
for	the	entire	process	initiated.
There	are	MCollective	agents	to	control,	reuse,	and	interact	cleanly	with	Puppet	and
Chef.	I’ve	heard	people	discuss	agents	for	CFengine,	Ansible,	and	Salt	as	well.
MCollective	has	replaced	puppet	kick	for	controlling	Puppet	agents.

Tip

If	you	have	used	puppet	kick	in	the	past,	you	are	likely	aware	that	Puppet	Labs	has
deprecated	puppet	kick	and	will	be	removing	support	for	it	in	a	future	release.
MCollective	replaces	puppet	kick	in	both	the	community	and	Puppet	Enterprise	product
lines	and	provides	significantly	more	features	and	functionality.	

At	the	end	of	Part	I,	we	will	introduce	how	to	use	both	Puppet	and	Chef	to	install	and
configure	MCollective.	The	remainder	of	the	book	will	include	instructions	for	making
each	change	manually	or	through	the	Puppet	module	and	Chef	cookbook	we	document	in
the	book.	However,	you	can	leverage	every	bit	of	information	in	this	book	without	using
Puppet	or	Chef.	All	configuration-management	systems	(Salt,	Cfengine,	Ansible,	etc.)	can
be	used	to	install	MCollective,	and	you	can	build	a	custom	agent	to	allow	MCollective	to
control	them.	We	will	cover	how	to	build	these	agents	in	Part	III.

Although	MCollective	plays	very	well	with	configuration-management	systems,	it	works
above	and	outside	of	them.	I’ve	used	MCollective	to	manage	nodes	in	more	than	a
hundred	co-location	facilities	around	the	world	without	any	configuration	management
available.	I’ve	seen	MCollective	used	for	multicontinent	distributed	data	collection
without	any	shared	management	core.

Don’t	get	tied	up	thinking	of	the	control	MCollective	provides	you	as	only	puppets
dancing	on	your	strings.	Consider	a	fishing	model	where	the	marionette	holds	the	strings
cautiously,	waiting	for	the	strings	to	go	taut.	I’ve	built	auto-healing	components	that	listen
passively	to	server	inputs	and	take	action	to	correct	a	problem	without	any	human
involvement.

There	are	far	more	ways	to	use	MCollective	than	I	can	make	marionette	and	string
metaphors	for.	After	reading	this	book,	you’ll	likely	have	thought	of	a	way	to	use	it	that
even	the	developers	didn’t	imagine.	You’ll	find	that	MCollective’s	framework	not	only

supports	but	encourages	creativity.

How	to	Fail	with	MCollective
Some	sites	don’t	succeed	at	using	MCollective.

Wow.	You	may	be	surprised	to	a	statement	this	strong	at	the	front	of	this	book.	However,	I
have	found	examining	sites	that	fail	with	MCollective	to	be	instructive	in	how	to	succeed
with	it.	So	we’re	going	to	evaluate	some	reasons	I	have	seen	MCollective	not	be	widely
deployed	at	sites:

MCollective	is	installed.	How	do	I	make	it	work?	What	does	it	do	for	me?

MCollective	is	not	a	software	package	that	provides	a	singular	feature	set	out	of	the
box.	MCollective	provides	a	framework	for	orchestrating	change.	As	such,	MCollective
doesn’t	do	anything	until	you	install	agents	to	answer	requests	and	process	actions	for
you.

Immediately	after	Chapter	2,	you’ll	move	directly	to	install	a	baseline	set	of	plugins	that
provide	valuable	and	useful	features.	By	the	end	of	Part	I,	you’ll	have	a	feature-rich	set
of	tools	for	your	evaluation	of	MCollective’s	power.

MCollective	kept	timing	out	in	our	network.

In	a	standard	configuration,	MCollective	will	work	in	a	variety	of	small	and	large
networks,	but	any	given	environment	may	require	tuning.	MCollective	and	ActiveMQ
contain	hundreds	of	tuning	options	capable	of	supporting	almost	any	global
environment.

In	Chapter	10,	we	review	in	depth	the	configuration	options	and	discuss	the	changes
necessary	in	large-scale	or	specialized	environments.

I	went	to	the	mailing	list	or	IRC	channel	and	nobody	answered	my	questions.

MCollective	has	active	support	by	both	Puppet	Labs	staff	and	friendly	users.	However,
all	are	busy	people,	and	none	are	mind	readers.	A	question	without	a	clear	meaning	may
get	overlooked.	The	best	way	to	get	help	is	to:

Phrase	your	question	clearly.	Instead	of	what	you	see	(i.e.,	“MCollective	doesn’t
work.”),	tell	the	list	what	you	did	and	what	errors	you	received.	Specific	queries	like,
“The	agents	on	one	node	won’t	respond.	The	logs	from	that	server	say…”	are	likely
to	get	helpful	responses.
Show	the	testing	you	have	done.	Provide	the	relevant	configuration	and	log	files
when	posting	to	the	mailing	list,	or	use	a	service	like	Gist	(preferred)	or	Pastebin
when	posting	to	the	#mcollective	IRC	channel.

Posting	to	the	help	channels	with	specific	information	like	this	allows	people	to	quickly
determine	if	they	can	help	you	and	whether	they	have	seen	the	problem	before.	Even	a
busy	person	might	be	able	to	point	you	in	the	right	direction.

In	summary,	MCollective	provides	a	flexible	framework	for	orchestrating	change.	The
changes	are	implemented	by	agents	designed	for	that	specific	request	on	each	server.	If	an
agent	isn’t	doing	what	you	expect,	read	through	this	book	and	see	if	your	question	is
already	answered.	Reach	out	to	the	support	resources	provided	in	the	book	with	specific
questions	about	what	you	are	trying	to	accomplish.	Other	people	may	have	solved

https://gist.github.com/
http://pastebin.com/

problems	just	like	yours.

Developing	new	functionality	with	MCollective	is	a	creative	endeavor.	If	no	agent
available	today	meets	your	needs,	this	book	provides	you	with	the	technical	bits	necessary
to	create	your	own	agent	plugins.	When	you	are	done	reading	this	book,	you’ll	have	all	of
the	tools	at	your	disposal.	You’ll	only	fail	if	you	don’t	reach	out	and	use	them.

Time	to	Get	Started
As	we	proceed,	this	book	will	show	you	how	MCollective	can	help	you	do	more	and	do	it
faster	and	yet	more	precisely	than	ever	before.	You’ll	learn	how	to	extend	MCollective	to
meet	your	specific	needs:

You’ll	install	MCollective	and	get	it	working	seamlessly	to	control	files,	packages,
services,	and	the	Puppet	daemon.
You’ll	learn	the	knobs	available	to	tune	in	the	middleware,	allowing	you	to	extend	your
MCollective	environment	across	the	campus	or	around	the	globe.
You’ll	tour	through	the	security	plugins	available	to	cryptographically	validate	every
request	in	your	MCollective	environment.
You’ll	discover	an	active	community	of	MCollective	developers	who	develop	agents,
clients,	and	other	MCollective	plugins	on	GitHub.
You’ll	build	your	own	custom	agent	and	client.	You’ll	test	the	agent	using	raw	RPC
calls,	then	build	a	native	Ruby	script	to	invoke	MCollective	features.

By	the	time	you	finish	this	book,	you	will	understand	not	just	how	powerful	MCollective
is,	but	you’ll	know	exactly	how	MCollective	works.	You’ll	have	the	knowledge	and
understanding	to	debug	problems	within	any	part	of	the	infrastructure.	You’ll	know	what
to	tune	as	your	collective	grows.	You’ll	have	a	resource	to	return	to	as	your	knowledge
and	experience	expands.

Let’s	get	moving!	Your	servers	are	marionettes	waiting	to	dance	for	you	—	it’s	time	for
you	to	take	hold	of	the	strings.

Chapter	2.	Installation
In	this	part	of	the	book,	we	will	walk	you	through	building	a	fully	functional	MCollective
environment	on	several	of	your	hosts.	You	will	deploy	a	simple	configuration	for	your
initial	tests.	We	will	use	this	baseline	configuration	as	we	expand	your	knowledge	in	each
of	the	following	chapters.

We	will	not	review	every	configuration	parameter	or	utilize	every	feature	in	this	initial
installation.	The	initial	installation	will	provide	a	basic	setup	suitable	for	learning.	In
Part	II,	we’ll	step	back	and	review	this	configuration	in	detail,	along	with	optional	changes
that	can	be	used	to	fine-tune	your	installation.

This	baseline	configuration	will	use:

ActiveMQ	as	the	messaging	broker	middleware
The	Pre-Shared	Key	(PSK)	plugin	to	validate	data	sent	between	the	clients	and	the
servers
A	simple	Admin	User	Has	Total	Control	authorization	scheme

You’ll	find	this	baseline	configuration	useful	as	a	foundation	to	build	upon	as	your
MCollective	installation	grows.

Requirements
Before	you	install	MCollective,	you	will	need	to	check	that	you	have	all	of	the	required
elements,	as	listed	in	the	next	two	sections.

Puppet	Labs	Repositories
If	you	are	using	RedHat,	Fedora,	CentOS,	Debian,	or	Ubuntu	Linux	and	are	willing	to	use
the	Puppet	Labs	repositories,	you	can	skip	this	section,	as	all	of	these	components	are
available	in	your	operating	system	packages	or	supplied	in	the	Puppet	Labs	Products	or
Dependencies	repositories.

Operating	System
The	operating	system	requirements	are	as	follows:

Working	time	synchronization

Many	problems	are	due	to	systems	having	a	different	idea	of	what	time	it	is.	It	is
essential	that	all	systems	in	the	collective	have	a	consistent	view	of	the	current	time
through	use	of	Network	Time	Protocol	(NTP).	Active	Directory/W32Time,	the	Unix
Time	Protocol	used	by	rdate,	and	the	original	Daytime	protocol	are	not	accurate
enough	to	provide	sufficiently	high-resolution	time	synchronization.

Ruby	1.8.7,	1.9.3,	2.0

MCollective	does	not	work	with	Ruby	versions	below	1.8.7.	If	your	operating	system
does	not	provide	you	with	a	modern	version	of	Ruby,	refer	to	Appendix	B	for
assistance.

Ruby	STOMP	Gem	1.2.10,	1.3.2,	or	higher

STOMP	is	the	Simple	Text	Oriented	Messaging	Protocol	used	by	MCollective.	

5	MB	of	disk	space

256	MB	of	RAM

A	git	client,	usually	available	from	your	operating	system	package	repository

The	git	client	is	only	necessary	when	installing	MCollective	or	plugins	from	source.	It
is	possible	to	finish	this	book	without	using	git.

Are	These	Versions	Higher	Than	Puppet	Labs
Documentation?
The	versions	specified	here	are	chosen	to	avoid	known	bugs	and	common	problems	as
reported	in	the	MCollective	email,	IRC,	and	ticketing	support	channels.	You	can	use	the
lower	versions	from	the	Puppet	Labs	documentation,	but	you	may	encounter	well-known
issues	you’d	avoid	by	using	these	versions.

Middleware	Broker
And	these	are	the	middleware	broker	requirements:

500	MB	of	memory	minimum
One	of	the	following	messaging	middleware	options:
ActiveMQ	5.8	or	higher	(preferred)	with	the	STOMP	connector
RabbitMQ	3.2	or	higher	with	the	STOMP	connector
Disk	space	dependent	on	middleware	service	installed	(45	MB	for	ActiveMQ	and	10
MB	for	RabbitMQ)

The	middleware	broker	will	not	require	any	disk	space	beyond	the	installation	packages
but	will	need	processor	and	network	capacity	for	handling	at	least	two	concurrent
connections	for	each	server	node.	Most	modern	systems	can	handle	hundreds	of
MCollective	server	connections.	Instructions	for	tuning	the	broker	to	handle	thousands	of
concurrent	connections	is	provided	in	“Large-Scale	Broker	Configurations”.

http://activemq.apache.org/stomp.html
http://www.rabbitmq.com/stomp.html

Where	to	Install
In	the	remainder	of	this	book,	we	discuss	MCollective	as	if	you	are	installing	it	in	your
production	environment.	I	would	imagine	that	you	are	smarter	than	that,	but	just	in	case,
here	are	some	great	ways	to	build	a	suitable	environment	to	test	and	learn	MCollective:

An	already	established	test	lab	you	maintain
A	group	of	VMware	or	Openstack	host	instances
Vagrant	machines	running	on	your	personal	computer	(you	can	find	good	Vagrant
images	at	http://puppet-vagrant-boxes.puppetlabs.com/)

The	choice	of	virtualization	platform	is	entirely	up	to	you.	As	you	read	earlier,
MCollective’s	needs	are	minimal.	Until	your	broker	is	supporting	hundreds	of	connected
servers,	its	needs	are	likewise	very	minimal.	A	t1.micro	free	Amazon	Web	Services
(AWS)	instance	is	suitable	for	any	role	in	a	small	MCollective	environment.	I’ve	built	a
complete	test	installation	on	my	Macbook	using	a	total	of	4	GB	of	RAM	to	support	a	half-
dozen	Vagrant	nodes.

In	all	cases,	I	recommend	using	either	CentOS	6.5	or	Ubuntu	13.10	x86	for	learning
purposes.	These	platforms	are	fully	supported	by	every	stock	MCollective	plugin,
allowing	you	to	breeze	through	the	learning	exercises	without	distractions.	After	you	have
a	working	MCollective	setup,	you’ll	be	able	to	find	help	in	Appendix	A	for	other
operating	systems.

A	nice	thing	about	MCollective	is	that	the	names	of	your	nodes	aren’t	important.	The	only
name	that	will	be	hardcoded	in	your	configuration	files	is	the	name	of	your	middleware
broker.	This	means	that	you	can	build	your	test	environment	and	then	easily	transition	to
production	hosts	while	changing	only	a	single	value.	As	you	are	likely	thinking	right	now,
you	can	simplify	even	further	by	using	a	DNS	alias	or	CNAME	and	then	avoid	any
configuration	file	changes.

http://puppet-vagrant-boxes.puppetlabs.com/

Dirty	Little	Secret
I	have	a	dirty	little	secret	to	share	with	you.	I’ve	run	every	single	command	in	this	book
against	a	live	production	environment.	Simply	put,	there’s	no	command	example	in	this
book	that	will	cause	a	production	outage.	If	your	environment	is	safe	for	testing	out	ideas
in,	or	if	you’re	just	running	cowboy,	there	are	no	commands	shown	in	this	book	that	will
cause	an	outage.

Naturally,	if	you	run	mco	destroy	the	world,	well	you	knew	what	you	were	doing	when
you	blew	your	foot	right	off.	You’ll	have	a	lot	of	powerful	features	in	hand	by	the	end	of
this	book.	You’ll	know	what	each	command	does,	and	how	to	filter	your	targets
effectively.	If	you’re	operating	cowgirl1	in	a	live	environment,	you’ll	want	to	be	careful
what	you	ask	MCollective	to	do.	But	every	command	shown	in	this	book	should	be	safe	to
run	in	production.

Build	yourself	a	group	of	nodes,	physical	or	virtual,	to	learn	on.	Use	CentOS	6.5	or
Ubuntu	13.10	if	possible	while	learning.	Pick	one	of	the	nodes	to	be	your	middleware
broker,	and	let’s	get	started.

Passwords	and	Keys
We	are	going	to	simplify	the	initial	installation	of	MCollective	to	make	it	easy	for	you	to
understand	and	work	with	it	initially.	For	this	installation,	we	will	need	three	unique
strings	used	for	authentication.	You	won’t	type	these	strings	at	a	prompt	—	they’ll	be
stored	in	a	configuration	file.	So	we	shall	cryptographically	generate	long	and	complex
random	passwords.		

Run	the	following	command	three	times	and	save	the	values:
$	openssl	rand	-base64	32

Copy	the	three	random	strings	into	your	Sticky	app,	text	editor,	or	write	them	down	on	a
piece	of	paper.	We’re	going	to	use	them	in	the	next	few	sections	when	configuring	your
service.

The	first	string	will	be	the	Client	Password	used	by	clients	to	connect	to	ActiveMQ	with
permissions	to	issue	commands	to	the	server	hosts.

The	second	string	will	be	the	Server	Password	used	by	servers	to	connect	to	ActiveMQ
with	permissions	to	subscribe	to	the	command	channels.

The	third	string	will	be	a	Pre-Shared	Key	used	as	a	salt	in	the	cryptographic	hash	used	to
validate	communications	between	server	and	client,	ensuring	that	nobody	can	alter	the
request	payload	in	transit.

Ensure	That	the	Client	and	Server	Passwords	Are	Different
Many	online	guides	for	setting	up	MCollective	suggest	using	the	same	username	and
password	for	clients	and	servers.	This	leads	to	a	problem	where	the	compromise	of	any
server	allows	control	messages	to	be	sent	from	the	compromised	server	to	any	host	in	the
collective.	We’ll	explain	this	problem	in	“Detailed	Configuration	Review”.

You	want	the	username	and	password	installed	on	every	server	to	be	able	to	subscribe	to
topics,	but	not	to	be	able	to	send	requests	to	them.	If	you	use	the	same	username	and
password	for	both,	someone	who	can	read	any	one	server’s	configuration	file	will	be	able
to	issue	requests	to	every	host	in	the	collective.	Keep	these	usernames	and	passwords
distinct	and	separate.

In	Chapter	13,	we	will	discuss	alternative	security	plugins.	The	SSL/TLS	security	plugins
can	encrypt	the	transport	and	provide	complete	cryptographic	authentication.	However,
the	simplicity	of	the	pre-shared	key	model	is	useful	to	help	get	you	up	and	running	quickly
and	provides	a	reasonable	level	of	security	for	a	small	installation.

Puppet	Labs	Repository
Puppet	Labs	provides	APT	and	YUM	repositories	containing	packages	for	open	source
products	and	their	dependencies.	These	community	repositories	are	intended	to
supplement	the	OS	vendor	repositories	for	the	more	popular	Linux	distributions.	These
repos	contain	the	Puppet	Labs	products	used	in	this	book,	including	MCollective,	Puppet,
and	Facter,	and	packages	for	the	dependencies	of	these	products,	including	Ruby	1.8.7	for
RHEL	5.x	systems.

Supported	Platforms
Puppet	Labs	maintains	Product	and	Dependency	repositories	for	the	operating	systems
listed	in	the	following	sections.	Other	operating	systems	can	use	MCollective	by	following
the	instructions	in	Appendix	B.

Enterprise	Linux	6
To	install	the	repositories	on	Enterprise	Linux	6,	run	the	following	command:

$	sudo	yum	install	http://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

Note

Enterprise	Linux	versions	include	RedHat,	CentOS,	Scientific,	Oracle,	and	all	downstream
Linux	distributions	using	the	same	number.

Enterprise	Linux	5
This	repository	includes	a	build	of	Ruby	1.8.7	for	RHEL-based	5.x	systems,	which	is
essential	for	MCollective:

$	sudo	yum	install	http://yum.puppetlabs.com/puppetlabs-release-el-5.noarch.rpm

Fedora
At	the	time	this	book	was	written,	Fedora	19–20	are	supported	and	available	as	shown
here:

$	sudo	yum	install	

		http://yum.puppetlabs.com/puppetlabs-release-fedora-20.noarch.rpm

Debian	and	Ubuntu
For	Debian	and	Ubuntu	systems,	you	have	to	download	the	.deb	file	appropriate	for	your
release.	It	is	best	to	browse	to	http://apt.puppetlabs.com/	and	look	at	the	files	available
there	to	decide	the	appropriate	one	to	install.

If	you	are	running	the	unstable	release	of	Debian	(Sid)	at	the	time	this	book	was	written,
you	should	install	the	repository	as	follows:

$	wget	http://apt.puppetlabs.com/puppetlabs-release-sid.deb

$	sudo	dpkg	-i	puppetlabs-release-sid.deb

$	sudo	apt-get	update

Likewise,	if	you	are	running	the	latest	Ubuntu	(Trusty	Tahr),	you	should	use	the
following:

$	wget	http://apt.puppetlabs.com/puppetlabs-release-trusty.deb

$	sudo	dpkg	-i	puppetlabs-release-trusty.deb

$	sudo	apt-get	update

Other	platforms
Most	platforms	(e.g.,	Solaris	and	FreeBSD)	have	package	repositories	that	contain	binary
packages	for	MCollective.	Consult	Appendix	A	for	specific	instructions	to	get
MCollective	packages	installed	on	other	operating	systems.

http://apt.puppetlabs.com/

Configuring	ActiveMQ
The	one	thing	that	every	MCollective	environment	must	have	is	publish/subscribe
middleware.	In	this	section,	we	will	install	ActiveMQ,	the	middleware	recommended	by
Puppet	Labs	for	being	best	performing,	most	scalable,	and	well	tested.	After	you	have	a
working	installation,	instructions	for	changing	the	middleware	to	RabbitMQ	are	provided
in	“Using	RabbitMQ”.

Install	the	Software
The	first	step	is	to	install	the	middleware	used	for	communication	between	clients	and
servers.	You	can	install	this	on	an	existing	Puppet	or	Chef	server.	Unless	you	have
hundreds	of	nodes,	it	won’t	require	a	dedicated	system.	Its	resource	needs	are	very
minimal.

For	RedHat,	CentOS,	and	Fedora-based	systems,	run	the	following:
$	sudo	yum	install	activemq

$	sudo	chkconfig	activemq	on

For	Debian	or	Ubuntu,	run:
$	sudo	apt-get	install	activemq

$	sudo	update-rc.d	activemq	multiuser

And	for	FreeBSD,	run:
$	sudo	pkg	add	activemq

$	echo	"activemq_enable=YES"	|	sudo	tee	-a	/etc/rc.conf

Tune	the	Configuration	File
Next,	we	will	tune	the	ActiveMQ	configuration	file,	which	should	be	installed	in	the
appropriate	etc/	directory	for	your	platform	(on	most	Linux	systems,	this	will	be
/etc/activemq/activemq.xml).	Edit	the	default	file	installed	by	the	ActiveMQ	package
according	to	the	following	suggestions.	At	the	time	this	book	was	written,	even	the	default
configuration	provided	by	the	Puppet	Labs-provided	package	needs	some	tweaking.		

Note

We’ll	cover	the	configuration	file	in	depth	in	Part	II.	During	this	installation,	we	will	only
cover	the	minimum	changes	necessary	to	get	ActiveMQ	working	for	MCollective.

Enable	purging	in	the	broker
Look	for	the	broker	statement	(usually	located	five	lines	into	most	default	configurations
I	have	seen).	You’ll	need	to	add	schedulePeriodForDestinationPurge	to	this:

<broker

		xmlns="http://activemq.apache.org/schema/core"

		brokerName="hostname"

		dataDirectory="leave	this	untouched"

		schedulePeriodForDestinationPurge="60000"

>

schedulePeriodForDestinationPurge	is	necessary	to	clean	up	stale	queues.	This	will	be
explained	comprehensively	in	“Detailed	Configuration	Review”.

Disable	producerFlowControl
Here	we	will	use	policyEntry	statements	to	disable	flow	control	on	both	topics	and
queues,	and	to	enable	garbage	collection	on	stale	queues:

<destinationPolicy>

				<policyMap>

						<policyEntries>

								<!--	MCollective	expects	producer	flow	control	to	be	turned	off.	-->

								<policyEntry	topic=">"

										producerFlowControl="false"

										memoryLimit="1mb"

								/>

								<!--	MCollective	generates	a	reply	queue	for	most	commands.

																Garbage-collect	these	after	five	minutes	to	conserve	memory.

								-->

								<policyEntry	queue=">"

										producerFlowControl="false"

										memoryLimit="10mb"

										gcInactiveDestinations="true"

										inactiveTimoutBeforeGC="300000"

								/>

						</policyEntries>

In	topic	and	queue	names,	the	>	character	is	a	wildcard	that	will	match	any	character	until
the	end	of	the	string.	Since	it	is	the	first	character	used,	all	topic	and	queue	names	will
match	these	rules.

Define	logins	for	clients	and	servers	in	simpleAuthenticationPlugin
You	will	find	the	plugins	section	in	the	ActiveMQ	configuration	provided	by	Puppet
Labs,	but	you	may	have	to	add	it	to	most	vendor	or	stock	Apache	configurations.	If	the
configuration	file	has	a	plugins	section,	then	replace	it	completely	with	the	example	that
follows.	Otherwise,	place	this	just	below	the	destinationPolicy	section.

In	this	section,	we	will	define	the	usernames	and	passwords	used	by	the	MCollective
servers	and	clients:	

<plugins>

		<simpleAuthenticationPlugin>

				<users>

						<authenticationUser

								username="client"

								password="Client	Password"

								groups="servers,clients,everyone"

						/>

						<authenticationUser

								username="server"

								password="Server	Password"

								groups="servers,everyone"

						/>

				</users>

		</simpleAuthenticationPlugin>

These	lines	are	pretty	easy	to	understand.	You	are	entering	the	username	and	password	to
be	used	for	clients	and	servers	to	authenticate.	The	groups	parameter	assigns	this	user	to
the	following	groups	used	for	authorization.

Tip

Note	that	plugins	does	not	terminate	here.	We	have	broken	the	plugins	block	in	two
halves	for	ease	of	reading.	The	plugins	XML	block	closes	at	the	end	of	the	authorization
section.

Define	permissions	for	clients	and	servers	in	authorizationPlugins
In	the	remainder	of	the	plugins	block,	we	define	rights	and	permissions	for	the	users	we
created	in	the	previous	section.	Be	very	careful	to	get	this	text	exactly	correct,	as	periods,
wildcards,	and	>	characters	in	particular	are	significant:

		<authorizationPlugin>

				<map>

						<authorizationMap>

								<authorizationEntries>

										<authorizationEntry	queue="mcollective.>"

												write="clients"	read="clients"	admin="clients"

										/>

										<authorizationEntry	topic="mcollective.>"

												write="clients"	read="clients"	admin="clients"

										/>

										<authorizationEntry	queue="mcollective.nodes"

												read="servers"	admin="servers"

										/>

										<authorizationEntry	queue="mcollective.reply.>"

												write="servers"	admin="servers"

										/>

										<authorizationEntry	topic="mcollective.*.agent"

												read="servers"	admin="servers"

										/>

										<authorizationEntry	topic="mcollective.registration.agent"

												write="servers"	read="servers"	admin="servers"

										/>

										<authorizationEntry	topic="ActiveMQ.Advisory.>"

												read="everyone"	write="everyone"	admin="everyone"

										/>

								</authorizationEntries>

						</authorizationMap>

				</map>

		</authorizationPlugin>

</plugins>

We	will	review	this	configuration	in	great	detail	in	Chapter	10.	At	this	time,	it	is	simply
essential	that	it	is	entered	exactly	as	it	appears	here.

Transports
Only	one	transport	should	be	enabled.	Comment	out	or	remove	all	other	transports	and
leave	only	the	STOMP	transport	enabled:	

<transportConnectors>

		<transportConnector	name="stomp+nio"	uri="stomp+nio://[::0]:61613"/>

</transportConnectors>

Disable	the	web	console
ActiveMQ	comes	with	a	web	console	for	management.	This	is	unnecessary	for
MCollective	and	could	have	security	implications	if	left	open	for	abuse.	Comment	this
out:

<!--	disabled	for	security	implications

<import	resource="jetty.xml"/>

-->

Start	the	Service
Now	that	we’ve	updated	the	configuration	file,	it	is	time	to	start	the	service:

$	service	activemq	start

Starting	ActiveMQ	Broker…

After	starting	the	service,	check	to	see	that	ActiveMQ	is	listening	on	TCP	port	61613:
$	netstat	-an	|	grep	61613

If	you	don’t	see	a	LISTEN	socket	available	for	incoming	connections,	check	the	logfile
(Java	errors	can	be	verbose,	so	page	through	the	output	carefully):

$	tail	-200f	/var/log/activemq/activemq.log

Firewall	Change
You	should	ensure	that	inbound	TCP	sessions	to	port	61613	can	be	created	from	every
MCollective	server	and	client.	

Most	Linux	systems	use	iptables	firewalls.	On	a	Linux	system,	you	could	use	the
following	steps	to	add	a	rule	before	the	global	deny.	If	all	of	your	servers	will	fit	within	a
few	subnet	masks,	it	is	advisable	to	limit	this	rule	to	only	allow	those	subnets,	as	shown
here:

$	sudo	iptables	--list	--line-numbers

Chain	INPUT	(policy	ACCEPT)

num		target					prot	opt	source				destination

1				ACCEPT					all	—	anywhere		anywhere						state	RELATED,ESTABLISHED

...etc

$	sudo	iptables	--list	--line-numbers

Chain	INPUT	(policy	ACCEPT)

num		target					prot	opt			source				destination

1				ACCEPT					all								anywhere		anywhere				state	RELATED,ESTABLISHED

2				ACCEPT					ipv6-icmp		anywhere		anywhere

...etc

Look	through	the	output	and	find	an	appropriate	line	number	for	the	new	rule.	Then	use
the	following	syntax	to	insert	the	rule	into	this	location	in	the	list:

$	sudo	iptables	-I	INPUT	20	-m	state	--state	NEW	-p	tcp	\

				--source	192.168.200.0/24	--dport	61613	-j	ACCEPT

$	sudo	ip6tables	-I	INPUT	20	-m	state	--state	NEW	-p	tcp	\

				--source	2001:DB8:6A:C0::/24	--dport	61613	-j	ACCEPT

Don’t	forget	to	save	that	rule	to	your	initial	rules	file.	For	RedHat-derived	systems,	this
can	be	as	easy	as	this:

$	sudo	service	iptables	save

iptables:	Saving	firewall	rules	to	/etc/sysconfig/iptables:[OK]

$	sudo	service	ip6tables	save

ip6tables:	Saving	firewall	rules	to	/etc/sysconfig/ip6table:[OK]

Warning

I’ve	shown	the	syntax	here	for	both	IPv4	and	IPv6	using	non-routed	networks.	Customize
to	suit	your	local	networks.	You	can	ignore	the	steps	for	one	protocol	or	the	other	if	you
don’t	have	nodes	using	both	protocols.	You	can	find	more	details	about	how	to	best	handle
dual-stack	nodes	in	“IPv6	Dual-Stack	Environments”.

Check	Appendix	A	for	platform-specific	instructions.

Installing	Servers
The	mcollectived	application	server	runs	on	nodes	that	will	process	requests	from
clients.	You	should	pick	several	target	nodes	that	you	desire	to	make	requests	of	and
install	the	server	as	described	in	the	following	section.

Install	the	Software
For	RedHat,	CentOS,	and	Fedora-based	systems,	run	the	following:

$	sudo	yum	install	mcollective

$	sudo	chkconfig	mcollective	on

For	Debian	or	Ubuntu,	run:
$	sudo	apt-get	install	ruby-stomp	mcollective

$	sudo	update-rc.d	mcollective	multiuser

And	for	FreeBSD,	run:
$	sudo	pkg	add	mcollective

$	echo	"mcollectived_enable=YES"	|	sudo	tee	-a	/etc/rc.conf

Server	Configuration	File
The	following	is	the	MCollective	server	configuration	file,	which	should	be	installed	on
every	host	you	want	to	control.	Edit	the	default	/etc/mcollective/server.cfg	file	installed	by
the	package	to	look	like	this:

#	/etc/mcollective/server.cfg

daemonize	=	1

direct_addressing	=	1

#	ActiveMQ	connector	settings:

connector	=	activemq

plugin.activemq.pool.size	=	1

plugin.activemq.pool.1.host	=	activemq.example.net

plugin.activemq.pool.1.port	=	61613

plugin.activemq.pool.1.user	=	server

plugin.activemq.pool.1.password	=	Server	Password

plugin.activemq.heartbeat_interval	=	30

#	How	often	to	send	registration	messages

registerinterval	=	600

#	Security	provider

securityprovider	=	psk

plugin.psk	=	Pre-Shared	Key

#	Override	platform	defaults?

libdir	=	/usr/libexec/mcollective

#logger_type	=	file

#loglevel	=	info

#logfile	=	/var/log/mcollective.log

#keeplogs	=	5

#max_log_size	=	2097152

#logfacility	=	daemon

Note

Note	that	you	have	to	replace	two	of	the	passwords	in	this	file	and	also	the	libdir	directory.

Note	that	libdir	will	vary	between	operating	systems.	For	this	stage	of	the	learning
process,	either	test	on	a	single	operating	system	or	adjust	it	by	hand	as	necessary	for	each
different	OS.	In	Chapter	7,	we’ll	introduce	you	to	a	Puppet	module	and	a	Chef	cookbook
that	will	handle	this	cleanly	for	you.

Start	the	Service
To	start	the	service,	run	the	following	command:

$	service	mcollective	start

Starting	mcollective:																																						[OK]

At	this	time,	you	should	see	the	server	bound	to	the	ActiveMQ	server	on	the	port	listed	in
both	the	server.cfg	and	activemq.xml	files:

$	netstat	-an	|	grep	61613

tcp			0			0	192.168.200.10:58006									192.168.200.5:61613										ESTABLISHED

If	you	are	using	IPv6,	the	response	may	look	like	this:
$	netstat	-an	-A	inet6	|	grep	61613

tcp			0			0	2001:DB8:6A:C0::200:10:45743	2001:DB8:6A:C0::200:5:61613		ESTABLISHED

Note

You	may	find	that	you	are	using	IPv6	when	you	didn’t	expect	it.	This	isn’t	generally	a
problem	in	most	sites,	so	don’t	rush	to	turn	it	off.	How	to	control	which	protocol	to	use	is
covered	in	“IPv6	Dual-Stack	Environments”.

Creating	a	Client
You	only	need	to	install	the	client	software	on	systems	from	which	you	will	be	sending
requests.	This	may	be	your	management	hosts,	a	bastion	host,	or	could	be	your	laptop	or
desktop	systems	in	the	office.

Install	the	Software
For	RedHat,	CentOS,	and	Fedora-based	systems,	run	the	following:

$	sudo	yum	install	mcollective-client

For	Debian	or	Ubuntu,	run:
$	sudo	apt-get	install	mcollective-client

And	for	FreeBSD,	run:
$	sudo	pkg	add	mcollective-client

Client	Configuration	File
The	following	is	the	client	configuration	file,	which	should	be	installed	only	on	hosts	from
which	you	will	submit	requests.	Edit	the	/etc/mcollective/client.cfg	file	installed	with	the
package	to	look	like	this:

#	/etc/mcollective/client.cfg

direct_addressing	=	1

#	Connector

connector	=	activemq

plugin.activemq.pool.size	=	1

plugin.activemq.pool.1.host	=	activemq.example.net

plugin.activemq.pool.1.port	=	61613

plugin.activemq.pool.1.user	=	client

plugin.activemq.pool.1.password	=	Client	Password

plugin.activemq.heartbeat_interval	=	30

#	Security	provider

securityprovider	=	psk

plugin.psk	=	Pre-Shared	Key

#	Use	auto-discovery

default_discovery_method	=	mc

direct_addressing_threshold	=	10

#	...or	pre-configure	the	list	of	nodes

#default_discovery_method	=	flatfile

#default_discovery_options	=	/etc/mcollective/nodes.txt

#	Miscellaneous	settings

color	=	1

rpclimitmethod	=	first

#	Performance	settings

direct_addressing_threshold	=	10

ttl	=	60

#	Override	platform	defaults?

libdir	=	/usr/libexec/mcollective

#logger_type	=	console

#logfacility	=	daemon

#loglevel	=	warn

#logfile	=	/var/log/mcollective.log

#keeplogs	=	5

#max_log_size	=	2097152

Note

Note	that	you	have	to	replace	two	of	the	passwords	in	this	file	and	also	the	libdir	directory
if	the	operating	systems	differ.

Security	Considerations
With	the	pre-shared	key	security	model,	anyone	who	can	read	the	client.cfg	file	can	find
the	password	used	to	publish	requests.	I	recommend	that	you	limit	the	people	who	can
read	the	client	file	to	the	people	who	you	trust	to	execute	commands	on	every	system:

$	sudo	chmod	640	/etc/mcollective/client.cfg

$	sudo	chown	root:wheel	/etc/mcollective/client.cfg

Note

The	Puppet	module	provided	in	this	book	does	this	step	for	you.	You	only	need	to	execute
the	commands	just	shown	during	our	initial	learning	installation.	Later	on,	if	you	are	using
the	provided	Puppet	module,	this	will	be	handled	for	you.

We’ll	cover	more	flexible	security	designs	in	Chapter	13.

Installing	from	Source
If	you	have	installed	the	packages	from	the	Puppet	Labs	repository,	you	can	skip	directly
down	to	“Testing	Your	Installation”.

If	there	are	no	suitable	packages	for	your	operating	system,	you	can	install	MCollective
from	source.	The	installer	will	place	the	files	in	the	standard	Ruby	locations	for	your
platform,	or	to	directories	which	you	give	it	as	options.

You	will	need	to	set	up	init	scripts	for	your	operating	system	on	your	own.	We’ll	show	you
where	the	examples	are	that	you	can	build	from.

Warning

Do	not	attempt	to	install	from	RubyGems.	The	version	in	RubyGems	was	not	created	by
Puppet	Labs	and	is	quite	a	bit	older	than,	and	incompatible	with,	recent	versions	of
MCollective.	It	also	does	not	install	the	connector	or	security	plugins.2

Using	the	Installer
Download	a	source	tarball	from	https://github.com/puppetlabs/marionette-collective/tags/.

Use	the	installer	to	place	the	files	in	your	standard	system	locations:
$	tar	xzf	marionette-collective-2.5.3.tar.gz

$	cd	marionette-collective-2.5.3

$	sudo	./install.rb

																						mc-call-agent:

																																mco:

																							mcollectived:

																													log.rb:	mcc…..........

																agent_definition.rb:	mmc…..

													standard_definition.rb:	mmc….

								...snip	test	results…

Files:			113

Classes:	137

Modules:	151

Methods:	788

Elapsed:	23.397s

mkdir	-p	-m	755	/etc/mcollective

install	-c	-p	-m	0644	etc/facts.yaml.dist	/etc/mcollective/facts.yaml

mkdir	-p	-m	755	/etc/mcollective

install	-c	-p	-m	0644	etc/server.cfg.dist	/etc/mcollective/server.cfg

mkdir	-p	-m	755	/etc/mcollective

install	-c	-p	-m	0644	etc/client.cfg.dist	/etc/mcollective/client.cfg

mkdir	-p	-m	755	/etc/mcollective

...snip	many	more	files…

You	could	also	install	to	a	different	path	and	use	the	RUBYLIB	environment	variable	to	add
it	to	Ruby’s	load	path:

$	cd	marionette-collective-2.5.3

$	sudo	/path/to/ruby	./install.rb		\

								--configdir=/opt/mcollective/etc					\

								--bindir=/opt/mcollective/bin								\

								--sbindir=/opt/mcollective/sbin						\

								--plugindir=/opt/mcollective/plugins	\

								--sitelibdir=/opt/mcollective/lib

$	export	PATH=${PATH}:/opt/mcollective/bin

$	export	RUBYLIB=${RUBYLIB}:/opt/mcollective/lib

https://github.com/puppetlabs/marionette-collective/tags/

Creating	an	Init	Script
If	you	didn’t	install	MCollective	from	a	package,	you’ll	need	to	create	an	init	script	to	start
MCollective	at	system	boot	time.	There	are	a	few	startup	scripts	in	the	MCollective	source
tree	to	use	as	starting	points:

ext/debian/mcollective.init
ext/redhat/mcollective.init
ext/solaris/mcollective.init

Start	with	these	examples	to	tailor	an	appropriate	startup	script	for	the	MCollective	server
daemon.

Creating	a	Package
You	may	want	to	create	a	package	for	your	platform	to	avoid	installing	from	source	on
every	node.	To	create	a	package	for	your	operating	system,	invoke	the	installer	with	an
option	to	build	a	chroot	tree	for	you:

$	cd	marionette-collective-2.5.3

$./installer.rb	--destdir=/package/root/mcollective

No	newer	files.

Files:			0

Classes:	0

Modules:	0

Methods:	0

Elapsed:	0.009s

mkdir	-p	-m	755	/package/root/mcollective/etc/mcollective

install	-c	-p	-m	0644	etc/facts.yaml.dist	

/package/root/mcollective/etc/mcollective/facts.yaml

mkdir	-p	-m	755	/package/root/mcollective/etc/mcollective

install	-c	-p	-m	0644	etc/server.cfg.dist	

/package/root/mcollective/etc/mcollective/server.cfg

mkdir	-p	-m	755	/package/root/mcollective/etc/mcollective

install	-c	-p	-m	0644	etc/client.cfg.dist	

/package/root/mcollective/etc/mcollective/client.cfg

...snip	many	more	files…

Once	you	have	done	this,	copy	the	init	script	you	created	into	the	package	root,	adjust	the
configuration	files	if	necessary,	and	then	build	the	package	according	to	your	operating
system	standards.

Testing	Your	Installation
After	you	have	set	up	a	middleware	host,	at	least	one	server	and	one	client,	you	can	run	a
test	to	confirm	that	your	configuration	settings	are	correct.	At	this	point,	the	installation
used	for	this	chapter	looks	like	the	diagram	shown	in	Figure	2-1.

Figure	2-1.	Installation	diagram

Note	that	host	geode	has	both	the	server	and	client	software	installed.	It	will	receive
requests	through	the	middleware	the	same	as	every	other	server.

The	ping	test	is	a	low-level	query	that	confirms	that	the	server	node	is	communicating
through	the	middleware:

$	mco	ping

sunstone																																	time=88.09	ms

geode																																				time=126.22	ms

fireagate																																time=126.81	ms

heliotrope																															time=127.32	ms

----	ping	statistics	----

4	replies	max:	127.32	min:	88.09	avg:	117.11

If	you	get	back	a	list	of	each	server	connected	to	your	middleware	and	its	response	time,
then	congratulations!	You	have	successfully	created	a	working	MCollective	framework.

Troubleshooting
If	you	didn’t	get	the	responses	we	expected,	here	are	some	things	to	check.	

Passwords
The	number	one	problem	you’ll	see	is	that	you	didn’t	use	the	correct	passwords	in	each
location.	Ensure	that	the	three	passwords	we	created	are	used	correctly,	and	replace	them
if	you	need	to	do	so	for	testing	purposes:	

Client	Password

Should	be	assigned	to	the	user	client	in	the	/etc/activemq/activemq.xml	file	and	used
for	plugin.activemq.pool.1.password	in	/etc/mcollective/client.cfg

Server	Password

Should	be	assigned	to	the	user	server	in	the	/etc/activemq/activemq.xml	file	and	used
for	plugin.activemq.pool.1.password	in	/etc/mcollective/server.cfg

Pre-Shared	Key

Should	be	used	as	the	value	for	plugin.psk	in	both	/etc/mcollective/server.cfg	and
/etc/mcollective/client.cfg

Networking
The	second	most	likely	problem	is	a	firewall	blocking	access	between	the	server	and	the
middleware,	or	the	client	and	the	middleware.	Test	the	server	connectivity	by	going	to	the
middleware	system	and	confirm	that	you	see	connections	to	port	61613	from	each	of	the
servers:			

$	netstat	-a	|grep	61613

tcp			0			0	:::61613																				:::*																									LISTEN

tcp			0			0	192.168.200.5.61613									192.168.200.10:58028									ESTABLISHED

tcp			0			0	192.168.200.5.61613									192.168.200.11:22123									ESTABLISHED

tcp			0			0	192.168.200.5.61613									192.168.200.12:42488									ESTABLISHED

tcp			0			0	2001:DB8:6A:C0::200:5:61613	2001:DB8:6A:C0::200:5:32711		ESTABLISHED

tcp			0			0	2001:DB8:6A:C0::200:5:61613	2001:DB8:6A:C0::200:13:45743	ESTABLISHED

If	you	don’t	see	connections	like	these,	then	there	is	a	firewall	that	prevents	the	servers
from	reaching	the	middleware	broker.

Connector	Names
One	potential	point	of	confusion	is	that	ActiveMQ	defines	the	transportConnector	very
differently	than	MCollective’s	connector	setting.	These	settings	will	not	match.		

In	the	MCollective	configuration	files	for	the	server	and	client,	it	should	indicate
activemq,	like	so:

connector	=	activemq

plugin.activemq.heartbeat_interval	=	30

plugin.activemq.pool.size	=	1

plugin.activemq.pool.1.host	=	activemq.example.net

This	tells	MCollective	that	it	is	communicating	with	ActiveMQ.	MCollective	always	uses
the	STOMP	protocol	when	connecting	with	ActiveMQ,	but	this	is	not	listed	here.

In	the	ActiveMQ	configuration,	you	don’t	mention	MCollective	but	instead	tell	the
transportConnector	to	provide	STOMP	protocol	transport	using	the	New	IO	(NIO)	Java
library.	(We’ll	cover	what	this	means	in	“Detailed	Configuration	Review”.)

<transportConnectors>

		<transportConnector	name="stomp+nio"	uri="stomp+nio://[::0]:61613"/>

</transportConnectors>

Warning

When	doing	searches	on	the	Internet,	you	may	find	references	to	a	stomp	connector.	This
connector	was	deprecated	in	MCollective	2.2.3	and	removed	in	2.3.	Always	use	the	native
activemq	and	rabbitmq	connectors.
1	Cowboys	and	cowgirls	both	shoot	from	the	hip.
2	This	may	be	fixed;	check	Improvement	MCO-320.

http://bit.ly/1wW72Du
https://tickets.puppetlabs.com/browse/MCO-320

Chapter	3.	Command-Line	Client
In	this	chapter,	I’m	going	to	introduce	some	key	terms	and	concepts	you’ll	hear
continuously	throughout	the	book.	Each	section	will	introduce	and	explain	the	concept,
and	(if	applicable)	the	plugin	that	implements	its	usage.

The	most	common	way	to	interact	with	mcollective	is	the	mco	command-line	client,	which
can	be	used	interactively	or	in	scripts.	It’s	also	relatively	easy	to	write	other	clients	in
Ruby,	which	can	be	used	as	backends	for	GUI	apps	or	as	glue	in	a	reactive	infrastructure.
We’ll	cover	how	to	build	your	own	clients	in	Part	III.	In	this	chapter,	we’re	going	to	focus
on	the	command-line	client.

As	I	introduce	each	concept,	I’ll	show	you	command	lines	that	use	that	feature.	As	we	will
only	use	the	ping	and	find	commands,	these	are	safe	to	run	in	your	own	MCollective
setup.	Feel	free	to	run	each	of	them	and	see	what	results	you	receive.

Configuration	File
The	global	configuration	file	for	an	MCollective	client	will	be	stored	in	the	installation
directory,	usually	/etc/mcollective/client.cfg.

Users	can	create	their	own	configuration	files.	The	default	file	name	is	.mcollective	in	the
user’s	home	directory.	Alternative	config	files	can	be	specified	with	-c	configfile	on	the
command	line.	Each	configuration	file	must	be	whole	and	complete.	If	you	specify	a
configuration	file,	then	the	global	configuration	file	is	ignored.

In	the	first	part	of	this	book,	user-specific	configuration	files	are	not	necessary.	All
changes	can	be	made	to	the	global	configuration	file.	It	will	be	necessary	to	create	user-
specific	files	when	using	SSL	keys	for	authentication,	as	described	in	Part	II.

Connector
For	requests	from	the	client	to	reach	your	servers,	the	client	utilizes	two	plugins:

A	connector	plugin	to	establish	a	link	with	the	middleware	and	publish	to	topics
A	security	plugin	to	sign	(and	optionally	encrypt)	the	data	payload

These	two	connectors	must	be	the	same	throughout	your	environment.	For	the	baseline
setup	described	in	Chapter	2,	we	used:
connector	=	activemq

The	alternative	would	have	been	to	use	RabbitMQ	or	to	build	a	custom	middleware
connector.

securityprovider	=	psk

Alternative	security	plugins	will	be	covered	in	Part	II.

For	our	initial	build,	the	plugin	configuration	will	be	the	same	for	every	client.

Facts
The	most	comprehensive	way	to	identify	related	groups	of	systems	is	by	facts,	which	are
key/value	pairs	with	information	about	your	server.	The	most	common	way	to	get	facts	is
by	using	the	facter	program	from	Puppet	Labs.	You	run	this	to	see	the	facts	that	facter
knows	about	your	system:	

$	sudo	yum	install	facter					#	RedHat,	CentOS,	Fedora	Based	Systems

$	sudo	apt-get	install	facter	#	Debian,	Ubuntu

$	sudo	pkg	add	facter									#	FreeBSD

$	facter

architecture	=>	x86_64

augeasversion	=>	1.0.0

bios_release_date	=>	01/01/2007

bios_vendor	=>	Seabios

bios_version	=>	0.5.1

blockdevice_sr0_model	=>	QEMU	DVD-ROM

...snip	many	more	lines…

If	you	don’t	use	facter,	you	can	generate	fact	data	from	any	source	you	like.

Tip

We	use	facts	extensively	in	the	following	examples.	It’s	a	good	idea	to	populate	the
facts.yaml	file	with	some	facts	to	use	as	you	proceed	through	the	exercises.	It	doesn’t
matter	at	this	point	what	the	facts	are,	so	you	can	name	them	to	amuse	yourself	during
your	learning	process.	Before	the	end	of	this	chapter,	you’ll	come	to	understand	their
value.

First,	edit	the	server.cfg	file	(often	at	/etc/mcollective/server.cfg)	to	contain	the	following:
#	Facts

factsource	=	yaml

plugin.yaml	=	/etc/mcollective/facts.yaml

The	target	for	the	plugin.yaml	parameter	could	include	multiple	filenames	separated	by	a
colon	in	Unix	systems	or	a	semicolon	for	Windows	servers.

The	most	flexible	way	to	get	facts	for	MCollective	is	to	let	Puppet	or	Chef	supply	them	for
you,	which	we	will	show	you	in	Chapter	7.	For	now,	a	quick	way	to	store	many	useful
facts	is	to	have	cron	invoke	facter	and	store	the	results:

/etc/cron.d/facts.sh:

				*/30	*	*	*	*			facter	-y	>	/etc/mcollective/facts.yaml

Alternatively,	you	can	simply	create	this	file	and	enter	some	random	facts	for	learning
purposes.	The	file	needs	to	be	in	YAML	dictionary	format.	Here’s	a	quick	example:

architecture:	x86_64

operatingsystem:	CentOS

operatingsystemrelease:	6.5

yamltest:	true

After	you	create	the	facts.yaml	file,	you	need	to	restart	mcollectived	for	the	facts	to	be
loaded	and	available:

$	sudo	service	mcollective	restart

Shutting	down	mcollective:																																	[OK]

Starting	mcollective:																																						[OK]

Once	you	have	made	the	changes,	you	can	use	the	inventory	request	and	read	through	the
output	to	see	if	the	facts	are	available	on	the	node:

http://bit.ly/WBwsfa

$	mco	inventory	nodename

read	down	through	the	output…

			Facts:

						architecture	=>	x86_64

						augeasversion	=>	1.0.0

						bios_release_date	=>	01/01/2007

						bios_vendor	=>	Seabios

...etc…

I	rather	like	using	awk	to	skip	all	of	the	other	inventory	output	(naturally,	this	is	not
guaranteed	against	future	changes	in	the	output	of	inventory):

$	mco	inventory	nodename	|	awk	'/Facts:/','/^$/'

You	can	also	query	for	how	many	nodes	share	the	same	value	for	facts.	For	example,
every	node	in	the	following	command	output	has	the	operatingsystem	fact	but	only	four
nodes	have	the	hostname	fact:

$	mco	facts	operatingsystem

Report	for	fact:	operatingsystem

								CentOS																																		found	2	times

								FreeBSD																																	found	1	times

								Ubuntu																																		found	1	times

								Windows																																	found	1	times

Finished	processing	5	/	5	hosts	in	61.45	ms

$	mco	facts	hostname

Report	for	fact:	hostname

								fireagate																															found	1	times

								geode																																			found	1	times

								heliotrope																														found	1	times

								sunstone																																found	1	times

Finished	processing	5	/	5	hosts	in	68.38	ms

$	mco	facts	chef_environment

Report	for	fact:	chef_environment

								dev																																					found	3	times

								prod																																				found	2	times

Finished	processing	5	/	5	hosts	in	60.51	ms

Warning

There	is	a	plugin	named	mcollective-facter-facts	on	the	Puppet	Labs	GitHub.	This
agent	can	be	slow	to	run,	as	it	invokes	facter	for	each	evaluation.	In	theory,	this	would	be
more	accurate	than	reading	a	file	where	the	output	was	flushed	to	disk.	In	practice,	queries
time	out	randomly	and	inconsistently.	Nearly	every	time	someone	reports	problems	with
nodes	disappearing	or	not	responding,	this	fact	source	was	the	culprit.

I	recommend	staying	with	the	YAML	source	to	avoid	this	difficulty.	MCollective
consistently	responds	quickly	and	accurately	when	reading	the	facts	from	a	YAML	file.

Inventory
One	of	the	basic	commands	provided	in	the	MCollective	client	is	the	inventory
command.	This	command	allows	you	to	see	how	a	given	server	is	configured,	what
collectives	it	is	part	of,	and	various	running	statistics.

For	our	purposes,	the	most	important	part	of	this	output	is	what	agents	and	plugins	are
installed	on	the	host.	It	will	also	tell	you	what	Puppet	classes	it	knows	about	(if	Puppet	is
running	on	the	host)	and	what	facts	are	known	about	the	host	(if	you	set	up	facts	in	the
previous	section).	You	should	run	this	command	against	one	of	your	servers	and	examine
the	output.	We	won’t	do	anything	with	this	just	now,	but	we	will	be	coming	back	to	this
throughout	the	next	two	chapters:

$	mco	inventory	heliotrope

Inventory	for	heliotrope:

			Server	Statistics:

																						Version:	2.5.3

																			Start	Time:	Mon	Jul	26	03:11:12	-0700	2014

																		Config	File:	/etc/mcollective/server.cfg

																		Collectives:	mcollective

														Main	Collective:	mcollective

																			Process	ID:	1334

															Total	Messages:	16

						Messages	Passed	Filters:	13

												Messages	Filtered:	3

													Expired	Messages:	0

																	Replies	Sent:	12

									Total	Processor	Time:	38.56	seconds

																		System	Time:	128.22	seconds

			Agents:

						discovery							rpcutil

			Data	Plugins:

						agent											fstat

			Configuration	Management	Classes:

						No	classes	applied

			Facts:

						No	facts	known

Inventory	Reports
You	can	pull	bulk	reports	from	the	inventory	service	as	well.	Create	a	small	Ruby	script	to
output	the	values	and	pass	it	to	the	script	argument	of	the	inventory	command.

The	following	example	file,	named	inventory.mc,	provides	a	list	of	hosts	in	the	format:
Hostname	Architecture	Operating	System	OS	Release	Ver:

$	cat	inventory.mc

inventory	do

		format	"%20s	%8s	%10s	%-20s"

		fields	{[identity,	facts["architecture"],

				facts["operatingsystem"],	facts["operatingsystemrelease"]

]}

end

$	mco	inventory	--script	inventory.mc

															geode			x86_64				CentOS	6.4

												sunstone				amd64				Ubuntu	13.10

										heliotrope			x86_64				CentOS	6.5

											tanzanite			x86_64				Windows	7	Ultimate	SP1

											fireagate				amd64				FreeBSD	9.2-RELEASE

Discovery
One	of	the	most	basic	operations	performed	by	the	MCollective	client	is	to	discover	which
servers	are	available	in	the	collective.	It	will	use	this	information	when	deciding	how	to
issue	commands.	Let’s	take	a	look	at	a	basic	example	of	this:		

$	mco	find	--with-identity	/a/	--verbose

Discovering	hosts	using	the	mc	method	for	2	second(s)	2

tanzanite

fireagate

Discovered	2	nodes	in	2.00	seconds	using	the	mc	discovery	plugin

How	did	the	client	determine	which	servers	matched	the	filter?	The	answer	is	that	it	used
the	mc	discovery	plugin	configured	in	the	client.cfg	file	to	ask	the	servers.	Let’s	use	the
built-in	help	to	see	what	this	plugin	does:

$	mco	plugin	doc	mc

MCollective	Broadcast	based	discovery

DISCOVERY	METHOD	CAPABILITIES:

						Filter	based	on	configuration	management	classes

						Filter	based	on	system	facts

						Filter	based	on	mcollective	identity

						Filter	based	on	mcollective	agents

						Compound	filters	combining	classes	and	facts

The	mc	discovery	plugin	sends	out	a	broadcast	query	to	all	servers	with	the	filter	you
specify.	If	more	than	10	servers	respond,	then	it	will	send	out	the	request	as	a	broadcast.	If
fewer	than	10	servers	respond,	it	will	send	direct	messages	to	each	server.

Tip

You	can	change	the	threshold	for	when	to	use	broadcast	versus	direct	addressing	queries
by	altering	the	direct_addressing_threshold	parameter	in	the	client	configuration	file
(see	Figure	3-1).

Figure	3-1.	Direct	addressing

One	way	to	avoid	the	broadcast	discovery	used	by	mc	is	to	use	a	different	discovery
plugin.	The	other	discovery	plugins	provided	by	default	are	the	flatfile	and	stdin
discovery	plugins.	These	are	more	limited	discovery	mechanisms	that	use	a	list	of
hostnames	from	a	file	or	standard	input.	Any	of	the	following	invocations	achieve	exactly
the	same	thing:

Use	the	--nodes	filename.
Use	--disc-method	flatfile	--discovery-option	filename.
Use	--disc-method	stdin	and	send	a	list	of	identities	on	standard	input.

With	any	of	these	invocations,	no	broadcast	query	will	be	used.	The	request	will	be	sent
directly	to	a	queue	specific	to	each	node:

$	mco	plugin	doc	flatfile

Flatfile	based	discovery	for	node	identities

DISCOVERY	METHOD	CAPABILITIES:

						Filter	based	on	mcollective	identity

$	cat	/path/to/hostlist

fireagate

heliotrope

$	mco	rpc	rpcutil	ping	--disc-method	flatfile	--disc-option	/path/to/hostlist

Discovering	hosts	using	the	flatfile	method….	2

	*	[==>]	2	/	2

heliotrope

			Timestamp:	1385012042

fireagate

			Timestamp:	1385012044

Finished	processing	2	/	2	hosts	in	146.13	ms

Responses	to	the	request	are	compared	against	the	list	of	servers	identified	in	discovery,	so
as	to	know	if	any	nodes	failed	to	respond.

Note

mco	rpc	is	a	method	to	send	a	request	to	the	agent	without	using	the	client	application.
You’ll	learn	how	to	do	this	in	Part	III.

The	only	way	to	use	the	flatfile	discovery	method	with	ping	is	to	use	the	RPC	invocation.3

There	are	a	number	of	other	discovery	plugins	available	for	MCollective,	including	ones
for	PuppetDB,	Chef,	MongoDB,	RiakDB,	and	Elastic	Search.	We’ll	cover	how	to	build
your	own	discovery	plugin	in	Part	III.

You	might	assume	that	using	customized	discovery	plugins	is	a	good	way	to	limit	your
commands,	but	it	really	isn’t.	MCollective	depends	on	a	consistent	discovery	view.	To
limit	which	servers	you	affect	with	a	command,	let’s	talk	about	filtering.

Filters
In	general,	you	will	find	it	wasteful	and	time-consuming	to	build	a	custom	list	of	targets
for	each	MCollective	command.	You	will	find	it	much	easier	to	use	the	default	broadcast
discovery	method	and	use	filters	instead.	Filters	are	used	by	the	Discovery	plugin	to	limit
which	servers	are	sent	a	request.	Filters	can	be	applied	to	any	MCollective	command.

The	syntax	for	filters	are	documented	in	the	online	help:
$	mco	help

Host	Filters

		-W,	--with	FILTER															Combined	classes	and	facts	filter

		-S,	--select	FILTER													Compound	filter	combining	facts	and	classes

		-F,	--wf,	--with-fact	fact=val		Match	hosts	with	a	certain	fact

		-C,	--wc,	--with-class	CLASS				Match	hosts	with	a	certain	config	class

		-A,	--wa,	--with-agent	AGENT				Match	hosts	with	a	certain	agent

		-I,	--wi,	--with-identity	IDENT	Match	hosts	with	a	certain	configured	identity

There	are	long	and	short	versions	of	every	filter	option.	We’re	going	to	use	the	long
versions	throughout	the	documentation	because	they	are	easier	to	read	on	the	page	and
easier	to	remember.

Note

In	the	following	examples,	you	will	see	facts,	classes,	and	agents	—	concepts	I	haven’t
introduced	yet.	Don’t	worry	about	this	for	now.	At	this	point,	you	should	see	how	flexible
and	powerful	the	filtering	language	is.	In	the	following	sections,	we’ll	walk	you	through
how	to	enable	these	features.

Here	are	some	examples	of	using	filters.	Each	one	outputs	a	list	of	MCollective	servers
that	match	the	criteria.	These	are	good	to	run	before	executing	a	command,	to	ensure	that
your	request	will	be	processed	by	the	nodes	you	expect	to	match.	In	our	first	example,
we’ll	find	all	hosts	with	an	i	in	their	name:

$	mco	find	--with-identity	/i/

heliotrope

fireagate

List	all	web	servers	named	web	followed	by	a	number:
$	mco	find	--with-identity	/^web\d/

List	all	nodes	that	have	the	Puppet	class	webserver	applied	to	them:
$	mco	find	--with-class	webserver

Show	all	nodes	that	run	the	CentOS	operating	system:
$	mco	find	--with-fact	operatingsystem=CentOS

Show	all	nodes	that	have	the	package	agent	installed	on	them:
$	mco	find	--with-agent	package

Requires	Discovery	Plugin	Support
If	you	look	back	at	the	previous	section,	you’ll	notice	that	the	flatfile	discovery	plugin
only	supports	the	identity	filter.	This	is	why	we	use	and	recommend	the	mc	discovery
plugin,	to	ensure	that	all	of	these	powerful	filters	are	available	to	you.

Combination	Filters
There	are	two	types	of	combination	filters.	The	first	type	combines	Puppet	classes	and
facter	facts.	Here	is	an	example	where	we	ping	only	CentOS	hosts	with	a	Puppet	class
nameserver:

$	mco	ping	--with	"/nameserver/	operatingsystem=CentOS"

The	second	type	is	called	a	select	filter	and	is	the	most	powerful	filter	available.

The	select	filter	allows	you	to	create	searches	against	Puppet	facts	and	classes	with
complex	Boolean	logic.	This	is	the	only	filter	where	you	can	use	the	operands	and	and	or.
You	can	likewise	negate	terms	using	not	or	!	in	the	logic.

For	example,	ping	only	Ubuntu	nodes	that	have	the	webserver	class	applied	to	them:
$	mco	ping	--select	"operatingsystem=Ubuntu	and	/nameserver/"

Ping	every	CentOS	node	that	isn’t	in	the	dev	environment:
$	mco	ping	--select	"operatingsystem=CentOS	and	!environment=dev"

Ping	every	virtualized	webserver:
$	mco	ping	--select	"(/httpd/	or	/nginx/)	and	is_virtual=true"

The	final	example	showed	how	to	match	virtualized	nodes	with	either	the	httpd	or	nginx
Puppet	class	applied	to	them	which	also	have	the	fact	is_virtual.	This	search	is	only
possible	using	the	select	filter	type.

Not	All	Filters	Are	Available	with	Every	discovery	Plugin
If	you	are	using	the	flatfile	or	stdin	discovery	method,	only	the	identity	filter	can	be
used.	Consult	the	documentation	for	each	discovery	method	to	determine	which	filters
are	available.

Using	a	select	filter	will	cause	the	mc	discovery	plugin	to	be	used,	even	if	a	different
plugin	is	provided	on	the	command	line.

Limits
Beyond	what	filters	can	do,	you	may	also	want	to	limit	how	many	servers	receive	the
request	or	how	many	process	it	at	the	same	time.	We’re	going	to	cover	how	to	do	this.

To	control	how	many	servers	receive	your	request,	use	the	option	--one	to	get	a	random
server	or	--limit	to	specify	either	a	fixed	number	of	servers	or	a	percentage	of	the	servers
matching	a	filter.

For	example,	15	servers	of	any	type:
$	mco	find	--limit	15

Only	one	CentOS	server:
$	mco	facts	architecture	--one	--with-fact	operatingsystem=CentOS

Five	servers	that	have	the	webserver	Puppet	class	applied	to	them:
$	mco	facts	osfamily	--limit	5	--with-class	webserver

One-third	of	the	servers	that	have	the	webserver	Puppet	class	applied	to	them:
$	mco	facts	is_virtual	--limit	33%	--with-class	webserver

By	default,	every	server	that	matches	the	filter	will	be	sent	the	request	at	the	same	time.
While	it	is	impressive	to	see	every	server	in	your	network	jump	to	perform	your	request	at
exactly	the	same	instant,	there	are	times	that	you	may	want	to	limit	this.	For	example,	you
probably	don’t	want	every	node	in	a	load	balancer	pool	to	upgrade	themselves	at	the	same
moment.	Here	are	some	options	to	control	how	many	servers	receive	the	request	in	a
batch,	and	how	far	apart	between	each	batch.

Query	sudo	package	version	in	batches	of	10	servers	spaced	20	seconds	apart:
$	mco	package	status	sudo	--batch	10	--batch-sleep	20

Query	the	Puppet	version	of	all	German	servers,	processing	five	every	30	seconds:
$	mco	package	status	puppet	--batch	5	--batch-sleep	30	--with-fact	country=de

Ping	every	server	with	a	w	in	its	name	without	delay	—	no	batching:
$	mco	ping	--with-identity	/w/

Warning

Ping	is	a	very	low-level	request	that	doesn’t	honor	either	--batch	or	--limit.

Output
Beyond	controlling	which	servers	receive	the	request	and	how	quickly,	you	can	also
control	the	output	you	receive	in	response.	Here	are	some	useful	examples	to	change	the
way	you	receive	your	responses.

This	provides	structured	data	instead	of	friendly	text	in	response:
$	mco	plugin	--json	command	options…

This	avoids	display	of	the	status	bar:
$	mco	plugin	--no-progress	command	options…

This	tells	you	how	long	discovery	takes,	and	gives	you	full	RPC	statistics	at	the	bottom:
$	mco	plugin	--verbose	command	options…

Discovering	hosts	using	the	mc	method	for	2	second(s)	3

...normal	output…

----	command	plugin	results	----

											Nodes:	3	/	3

					Pass	/	Fail:	3	/	0

						Start	Time:	Mon	Feb	10	23:26:06	-0800	2014

		Discovery	Time:	2003.32ms

						Agent	Time:	178.30ms

						Total	Time:	2181.62ms

This	sends	the	commands	but	ignores	the	response	queue	entirely:
$	mco	plugin	--no-results	command	options…

One	request	option	that	I	particularly	like	is	to	display	only	failed	or	only	successful
responses	to	a	query.

This	should	show	you	only	the	servers	who	failed	to	execute	the	request:
$	mco	plugin	--display	failed	command	options…

Only	the	servers	who	successfully	executed	the	request:
$	mco	plugin	--display	ok	command	options…

All	of	the	responses	from	any	servers	who	received	the	request:
$	mco	plugin	--display	all	command	options…

Warning

At	the	time	this	book	was	written,	few	of	the	applications	I	tested	honored	the	display
input.	I	received	the	same	results	from	each	of	them	no	matter	what	value	I	provided.
Hopefully	this	option	will	become	better	supported.

Classes
Classes	are	the	named	blocks	of	code	used	by	Puppet	to	apply	policy	to	a	node.	For
example,	you	may	apply	a	webserver	class	to	an	MCollective	server	that	runs	Apache.	We
can	use	filters	to	limit	requests	to	servers	that	have	certain	Puppet	classes	applied	to	them.

Note

If	you	aren’t	using	Puppet	or	Chef,	this	section	won’t	be	useful	to	you.

If	you	are	using	Puppet	or	Chef,	the	language	gets	tricky	in	this	section.	The	MCollective
server	runs	on	nodes	in	your	collective.	A	Puppet	or	Chef	server	compiles	catalogs	on
request	for	agents,	which	run	on	nodes	with	MCollective	servers	—	just	to	confuse	you.

Puppet
The	Puppet	agent	writes	out	the	classes	from	the	node’s	Puppet	catalog	to	classes.txt	in	the
$statedir	(which	is	usually	/var/lib/puppet/state).	MCollective	knows	where	this	is	by
default.

Puppet	allows	you	to	override	the	location	where	the	classes	are	stored.	If	so,	you’ll	need
to	update	the	MCollective	configuration	to	match	using	the	classfile	directive	in
server.cfg:

#	puppet.conf

[agent]

		classfile	=	/only/tigger/knows/classes.txt

#	server.cfg

classesfile	=	/only/tigger/knows/classes.txt

If	you	have	a	heterogenous	environment,	you	may	find	that	Puppet’s	default	location
differs	on	every	platform.	I	have	found	it	best	to	leave	Puppet	and	MCollective	with	the
same	default	locations,	rather	than	trying	to	control	it	by	tweaking	both	configurations.

Warning

On	Red	Hat,	CentOS,	and	Fedora	systems,	the	Puppet	Labs	packages	install	a	default
puppet.conf	that	contains	an	incorrect/not-default	location	for	the	classfile.	This	breaks
MCollective’s	ability	to	read	classes	on	these	hosts.	You	have	to	either	hardcode	the
classfile	in	mcollective/server.cfg	or	remove	the	classfile	override	from	the	EL
default	puppet.conf.	The	latter	fix	is	easiest.

You	can	check	here	to	see	if	this	bug	is	resolved	yet:	PUP-1610.

https://tickets.puppetlabs.com/browse/PUP-1610

Chef
The	Chef	cookbook	documented	in	Chapter	7	will	place	all	roles	and	recipes	in	a	file
named	/var/tmp/chefnode.txt.	It	will	configure	MCollective	to	use	it	by	placing	the
following	configuration	line	in	server.cfg:

classesfile	=	/var/tmp/chefnode.txt

You	can	reference	the	roles	and	recipes	in	your	filters	like	so:
$	mco	find	--with-class	role.webserver	--with-class	/apache/

Bash	Completion
MCollective	provides	a	plugin	for	bash	to	enable	command-line	completion.
Unfortunately,	this	plugin	isn’t	installed	by	default	on	any	platform	I	found	a	package	for.
Here’s	a	way	to	install	and	enable	this.		

If	you	have	the	source	available	you	can	install	it	from	there:
$	cd	marionette-collective-2.5.3

$	sudo	cp	ext/bash/mco_completion.sh	/etc/bash_completion.d/

If	you	installed	from	packages,	you	can	simply	download	it	directly	from	GitHub:
$	wget	https://raw.githubusercontent.com/puppetlabs/marionette-collective/

		master/ext/bash/mco_completion.sh

$	sudo	cp	mco_completion.sh	/etc/bash_completion.d/

Once	bash	completion	is	installed	and	you	start	a	new	shell	session,	you	can	hit	Tab	to	get
information	on	possible	completions	for	your	mco	command	line.	For	example:

$	mco	service	[TAB]

-A							--discovery-timeout	--help			-t								-v								--wc			--with-agent

-c							--dt																-I							-T								--verbose	--wf			--with-class

-C							-F																		-q							--target		-W								--wi			--with-fact

--config	-h																		--quiet		--timeout	--wa						--with	--with-identity

3	Improvement	request	MCO-224	documents	this	issue.

https://tickets.puppetlabs.com/browse/MCO-224

Chapter	4.	Web	Clients

Puppet	Enterprise
There	are	two	web	UIs	available	for	managing	MCollective.	Puppet	Labs	provides	a	web
UI	for	controlling	MCollective	in	their	Puppet	Enterprise	product	line.	Videos
demonstrating	the	Puppet	Enterprise	products	are	available	at	Puppet	Labs	webinars.

http://puppetlabs.com/puppet/puppet-enterprise
http://bit.ly/1nw8N5d

mcomaster
There	is	a	free	web	UI	named	mcomaster	that	is	available	on	GitHub	at
https://github.com/ajf8/mcomaster:

mcomaster	is	a	useful	way	to	explore	the	query	options	available	from	the	MCollective
plugins	you	have	installed.

Warning

Do	not	try	to	install	and	use	mcomaster	until	MCollective	is	working	properly	in	your
environment.	mcomaster	requires	Ruby	1.9	or	2.0	and	will	not	work	with	any	version	of
Ruby	1.8.

I’ve	gone	through	the	setup	and	installation	of	mcomaster	a	few	times	now,	and	in	my
experience,	most	administrators	use	it	a	few	times	and	then	drift	away.	The	WebUI	is
slower	to	use	than	the	command	line.

Setting	up	mcomaster	is	nontrivial	and	beyond	the	scope	of	this	book.	If	I	have	enough
free	time,	I	may	add	an	mcollective::mcomaster	class	to	my	MCollective	module	for
Puppet.

http://mcomaster.org/
https://github.com/ajf8/mcomaster
https://github.com/jorhett/puppet-mcollective

Chapter	5.	Agent	and	Client	Plugins
The	software	installed	on	the	nodes	you	control	through	MCollective	is	a	daemon	called
mcollectived.	We	will	install	several	agents	in	this	chapter	to	provide	powerful	new
features.	mcollectived	is	called	a	server	because	it	functions	as	an	application	server.	Its
abilities	are	expanded	by	installing	agent	plugins	to	extend	and	enhance	what	we	can
control	on	the	node.

Each	agent	has	a	matching	client	or	application	that	knows	how	to	issue	requests	specific
to	that	agent.	We’ll	install	and	use	the	client	applications	to	communicate	with	the	agent.

Connector	Plugins
On	each	node	in	your	environment,	we	have	installed	the	mcollectived	service.	For	this
daemon	to	operate	correctly,	it	requires	two	plugins:

A	connector	plugin	to	establish	a	link	with	the	middleware	and	subscribe	to	topics
A	security	plugin	to	encrypt	and	decrypt	the	communications

These	two	connectors	must	be	the	same	throughout	your	environment.	In	most	situations,
the	configuration	for	these	plugins	will	be	the	same	for	every	server.

For	the	baseline	setup	described	in	Chapter	2,	we	used:
connector	=	activemq

The	alternative	would	have	been	to	use	RabbitMQ	or	to	build	a	custom	middleware
connector.

securityprovider	=	psk

We	will	discuss	alternative	security	plugins	like	SSL	in	Chapter	13.

Installing	Agents	from	Packages
Puppet	Labs	provides	a	number	of	MCollective	agents	that	know	how	to	do	common
systems-management	tasks	(e.g.,	query,	start,	and	stop	processes,	and	query,	install,	and
remove	packages).	We’ll	start	with	just	the	plugins	they	provide	for	now.		

If	you	are	using	the	Puppet	Labs	repositories	as	described	in	“Puppet	Labs	Repository”,
you	can	simply	install	the	baseline	set	of	agents	as	follows:

#	for	RedHat,	CentOS,	and	Fedora-based	nodes

$	sudo	yum	install	mcollective-filemgr-agent

$	sudo	yum	install	mcollective-nettest-agent

$	sudo	yum	install	mcollective-package-agent

$	sudo	yum	install	mcollective-service-agent

#	for	Debian	and	Ubuntu	hosts

$	sudo	apt-get	install	mcollective-filemgr-agent

$	sudo	apt-get	install	mcollective-nettest-agent

$	sudo	apt-get	install	mcollective-package-agent

$	sudo	apt-get	install	mcollective-service-agent

You’ll	need	to	do	this	on	every	server	in	your	environment.	On	the	client	nodes,	you’ll
need	to	install	the	corresponding	client	package,	for	example:

$	sudo	yum	install	mcollective-filemgr-client

For	any	other	operating	systems,	you	should	install	from	the	operating	system	repository
or	from	source,	as	described	in	the	next	section.

Installing	Agents	from	Source
Installing	mcollective	plugins	from	source	is	actually	quite	easy	and	is	exactly	the	same	on
every	operating	system	I’ve	tested	the	process	on.	You’ll	need	to	have	git	installed	and
working	on	your	host	to	perform	these	steps:	

$	git	clone	git://github.com/puppetlabs/mcollective-filemgr-agent.git

Cloning	into	'mcollective-filemgr-agent'...

remote:	Reusing	existing	pack:	49,	done.

remote:	Total	49	(delta	0),	reused	0	(delta	0)

Unpacking	objects:	100%	(49/49),	done.

Checking	connectivity…	done

$	cd	mcollective-filemgr-agent

$	mco	plugin	package	.

Building	packages	for	mcollective-filemgr	plugin.

Completed	building	all	packages	for	mcollective-filemgr	plugin.

If	MCollective	does	not	know	how	to	build	packages	for	your	operating	system	yet,	then
you’ll	need	to	copy	the	files	into	the	MCollective	plugins	directory.

Copy	to	Plugins	Directory
MCollective	plugins	are	expected	to	mimic	the	structure	of	the	libdir/mcollective
directory.	This	means	that	the	plugin	will	have	an	agent	directory	for	the	agent	plugin	and
an	application	directory	for	the	client.	You	can	ignore	any	Rakefiles	or	spec	directories	in
the	plugin.

All	MCollective	plugins	must	be	copied	into	the	libdir,	as	specified	in	the	client	and	server
config	files.	libdir	should	be	the	standard	Ruby	lib	directory	containing	an	MCollective
directory,	under	which	lies	an	agent	directory	for	the	agent	plugins	and	an	application
directory	for	the	client.

In	short:	agent	plugin	files	are	named	libdir/mcollective/agent/NAME.(rb|ddl|erb).	There
is	usually	a	client	application	in	libdir/mcollective/agent/NAME.rb.	There	may	be	util	or
other	directories,	which	should	be	copied	verbatim.

For	example,	here	are	the	agent	files	installed	for	the	package	plugin:

For	RedHat,	CentOS,	and	Fedora-based	systems:
$	cp	agent/package.rb	/usr/libexec/mcollective/mcollective/agent/

$	cp	agent/package.dll	/usr/libexec/mcollective/mcollective/agent/

$	cp	application/package.rb	/usr/libexec/mcollective/mcollective/application/

For	Debian	and	Ubuntu	systems,	use:
$	cp	agent/package.rb	/usr/share/mcollective/plugins/mcollective/agent/

$	cp	agent/package.dll	/usr/share/mcollective/plugins/mcollective/agent/

$	cp	application/package.rb	/usr/share/mcollective/plugins/mcollective/application/

And	for	other	platforms,	use:
$	cp	agent/package.rb	/opt/mcollective/plugins/mcollective/agent/

$	cp	agent/package.dll	/opt/mcollective/plugins/mcollective/agent/

$	cp	application/package.rb	/opt/mcollective/plugins/mcollective/application/

You’ll	probably	want	to	use	configuration	management	to	deploy	these	files	to	all	of	your
servers.

Note

The	mcollective	directory	goes	inside	libdir.	In	the	Red	Hat	case,	this	means	the	complete
path	contains	the	string	mcollective/mcollective;	be	careful	not	to	accidentally	skip	the
second	mcollective.

More	details	are	available	at	http://bit.ly/WBy7RV.

http://bit.ly/WBy7RV

Notify	mcollectived
After	you	have	installed	new	agents	on	a	server	node,	you	tell	mcollectived	to	reload	the
agents.	The	simplest	method	is	to	restart	mcollectived	for	the	agents	to	be	loaded	and
active:	

$	sudo	service	mcollective	restart

Shutting	down	mcollective:																																	[OK]

Starting	mcollective:																																						[OK]

You	can	also	send	the	daemon	a	USR1	signal	to	effect	the	reload.	On	many	platforms,	you
can	do	this	with	pkill.	The	-x	option	can	be	used	to	ensure	you	don’t	kill	any	other
program	with	a	partial	name	match:

$	sudo	pkill	-USR1	-x	mcollectived	||	echo	"pkill	failed:	$?"

Once	you	have	made	the	changes,	you	can	use	the	inventory	request	and	read	through	the
output	to	see	if	the	new	agents	are	available	on	the	node:

$	mco	inventory	nodename

read	down	through	the	output…

Agents:

						discovery							rpcutil

						filemgr									nettest

						package									service

I	rather	like	using	awk	to	remove	all	other	output	(naturally,	it’s	not	guaranteed	against
future	changes	in	the	output):

$	mco	inventory	nodename	|	awk	'/Agents:/','/^$/'

You	can	also	query	to	get	a	list	of	every	server	that	has	the	agent	installed:
$	mco	find	--with-agent	filemgr

geode

heliotrope

sunstone

To	interact	with	these	agents,	we	need	to	have	installed	the	client	plugins	on	any	system
from	which	we	will	be	sending	requests	to	these	agents,	as	discussed	in	“Using	Client
Plugins”.

Note

I	have	seen	inconsistent	response	when	using	the	USR1	signal	to	reload	the	agent.	It	seems
to	work	most	times	for	making	newly	added	agents	available,	but	is	less	consistent	when
reloading	an	upgraded	agent.	If	you	don’t	see	what	you	expect,	it	is	best	to	perform	a	full
restart	of	mcollectived.

Disabling	Agents
What	if	you	want	to	disable	an	agent	on	a	machine?	For	example,	if	there	was	a	problem
with	the	agent	but	you	didn’t	want	to	go	through	uninstalling	it	yet.

There	are	two	ways	to	disable	an	agent.	The	first	option	is	within	the	server	configuration
file:

plugin.plugin_name.activate_agent	=	false

The	other	way	is	to	create	a	configuration	file	for	that	particular	agent:
$	echo	"activate_agent	=	false"	

		|	sudo	tee	-a	/etc/mcollective/plugins.d/plugin_name.cfg

Note

When	using	the	Puppet	Enterprise,	product	changes	to	the	main	server	config	file	are	not
supported.	You	must	create	plugin	configuration	files	in
/etc/puppetlabs/mcollective/plugin.d/.

Any	time	this	parameter	is	changed,	you’ll	need	to	signal	mcollectived	to	reload	as
documented	in	“Notify	mcollectived”.

Using	Client	Plugins
Client	plugins	provide	an	application	to	issue	commands	to	their	matching	agents.	They
are	only	useful	when	you	install	the	corresponding	agent	on	the	servers.	

If	you	are	using	the	Puppet	Labs	repositories	(as	described	in	“Puppet	Labs	Repository”),
you	can	install	a	baseline	set	of	safe	and	well-tested	clients	like	this:

#	RedHat,	CentOS,	Fedora	Based	Systems

$	sudo	yum	install	mcollective-filemgr-client

$	sudo	yum	install	mcollective-nettest-client

$	sudo	yum	install	mcollective-package-client

$	sudo	yum	install	mcollective-service-client

#	Debian	or	Ubuntu

$	sudo	apt-get	install	mcollective-filemgr-client

$	sudo	apt-get	install	mcollective-nettest-client

$	sudo	apt-get	install	mcollective-package-client

$	sudo	apt-get	install	mcollective-service-client

After	you	install	the	client	plugins,	you	can	get	a	list	of	applications	available	on	a	node
with	the	doc	command:

$	mco	plugin	doc

Please	specify	a	plugin.	Available	plugins	are:

Agents:

		filemgr																			File	Manager

		nettest																			Agent	to	do	network	tests	from	a	mcollective	host

		package																			Install	and	uninstall	software	packages

...etc

The	applications	add	custom	subcommands	(called	faces)	to	the	mco	client,	allowing	easy
access	to	the	commands	provided	by	each	client	plugin.	You	can	get	documentation	for
how	to	use	the	plugin	from	the	help	command:

$	mco	help	package

Install,	uninstall,	update,	purge	and	perform	other	actions	to	packages

Usage:	mco	package	[OPTIONS]	[FILTERS]	<ACTION>	<PACKAGE>

Usage:	mco	package	<PACKAGE>	<install|uninstall|purge|update|status>

The	ACTION	can	be	one	of	the	following:

				install				-	install	PACKAGE

				uninstall		-	uninstall	PACKAGE

				purge						-	uninstall	PACKAGE	and	purge	related	config	files

				update					-	update	PACKAGE

				status					-	determine	whether	PACKAGE	is	installed	and	report	its	version

$	mco	package	update	mcollective	-I	heliotrope

	*	[==>]	1	/	1

Summary	of	Ensure:

			2.5.3-1.el6	=	1

Finished	processing	1	/	1	hosts	in	5923.31	ms

You’ll	find	the	help	command	useful	for	determining	command	syntax,	but	extensive
details	about	inputs	and	outputs	can	be	found	only	in	the	plugin’s	documentation:	

$	mco	plugin	doc	agent/package

package

=======

Install	and	uninstall	software	packages

						Author:	R.I.Pienaar

					Version:	4.3.1

					License:	ASL	2.0

					Timeout:	180

			Home	Page:	https://github.com/puppetlabs/mcollective-package-agent

			Requires	MCollective	2.2.1	or	newer

ACTIONS:

========

			apt_checkupdates,	apt_update,	checkupdates,	install,	purge,	status,	uninstall,

			update,	yum_checkupdates,	yum_clean

			apt_checkupdates	action:

							Check	for	APT	updates

							INPUT:

										This	action	does	not	have	any	inputs

							OUTPUT:

											exitcode:

														Description:	The	exitcode	from	the	apt	command

															Display	As:	Exit	Code

...etc

Finding	Community	Plugins
You	may	have	needs	that	are	custom	and	unique	to	your	environment.	MCollective	is
extensible,	and	you’ll	find	many	user-provided	agents	available	on	the	Puppet	Forge.	You
will	also	find	it	easy	to	build	your	own	agents	and	clients.	In	those	situations,	you	can
orchestrate	actions	that	the	MCollective	maintainers	never	dreamed	about.	I’ll	show	you
how	to	do	this	in	Part	III.

Before	you	set	out	to	build	your	own	plugin,	you	should	look	around	to	ensure	that
someone	hasn’t	built	it	already.	There	are	many	benefits	to	using	something	that	is	easy	to
extend.	One	of	them	is	that	it	builds	a	large	community	of	people	who	extend	the	software
to	meet	their	own	needs.	The	other	is	that	members	of	the	community	can	share	the
plugins	with	one	another.	So	before	you	go	off	to	build	a	module	yourself,	you	should
check	to	make	sure	someone	hasn’t	already	made	an	agent	for	this.

The	first	location	to	look	for	plugin	agents	and	clients	should	always	be	the	Puppet	Labs
Yum	or	APT	repositories	(this	repo	and	how	to	use	it	is	documented	in	“Puppet	Labs
Repository”):

$	yum	search	--enablerepo=puppetlabs*	mcollective	#	RedHat

$	apt-cache	search	mcollective																				#	Debian

Puppet	Labs	maintains	a	wiki	page	with	links	to	many	of	the	plugins.

At	the	time	this	book	was	written,	the	only	place	where	I	saw	significant	community
MCollective	plugin	development	was	on	GitHub.	GitHub	contains	hundreds	of
MCollective	plugins	that	others	have	already	developed.	Running	a	GitHub	search	for
“mcollective”	will	return	most	of	the	plugins	available	for	download.

Warning

Unfortunately,	many	of	the	modules	available	on	GitHub	are	made	for	older	versions	of
MCollective.	It	can	be	difficult	to	sift	through	everything	to	find	the	gems.	As	the
requirements	for	plugins	have	changed	significantly	in	the	last	two	years,	I	would
recommend	avoiding	any	plugin	that	hasn’t	been	updated	in	2013	or	later.

It	is	always	best	if	you	can	build	packages	of	the	plugins	with	the	mco	plugin	package
command.	Install	the	-agent	packages	on	servers	and	the	-client	packages	on	clients.
You’ll	need	to	follow	the	steps	outlined	in	“Notify	mcollectived”	so	that	the	server	will
pick	up	the	new	agents.

If	you	can’t	build	a	package	with	the	plugin,	the	process	for	installing	plugins	from	source
is	documented	in	“Installing	from	Source”.

http://bit.ly/WBzrUP
https://github.com/search?q=mcollective

Recommended	Plugins
I	am	not	responsible	or	affiliated	with	any	of	these	plugins,	but	I	have	found	each	of	them
useful	at	one	site	or	another	in	the	last	year:

Plugin	name Description

Puppet	Labs	Plugins Agents	for	mongodb-registration,	NRPE,	and	many	others

mcollective-test A	set	of	helpers	to	assist	in	writing	unit	and	integration	tests	for	MCollective	agents	and
applications

iptables	agent Puppet	Labs	agent	for	controlling	iptables

Shell	Agent Agent	for	running	arbitrary	shell	commands

PuppetDB
Discovery

Discovery	plugin	that	uses	PuppetDB	as	the	source

Nadeau’s	Plugins Agents	for	procfs,	lvm,	lxc,	drbd

OMRY’s	Agents Agents	for	grep,	monit,	status	files,	uptime,	reboot…

Zcollective Configure	Zabbix	using	data	discovered	using	MCollective

Logstash	Audit An	audit	plugin	that	produces	logs	suitable	for	Logstash

There	are	many	more	plugins	available	on	GitHub	every	day.	Go	take	a	look	at
https://github.com/search?q=mcollective.

https://github.com/puppetlabs/mcollective-plugins
https://github.com/ripienaar/mcollective-test
https://github.com/puppetlabs/mcollective-iptables-agent
https://github.com/cegeka/mcollective-shell-agent
https://github.com/ploubser/mcollective-puppetdb-discovery
https://github.com/nadeau/mcollective-plugins
https://github.com/omry/mcollective-plugins
https://github.com/scalefactory/zcollective
https://github.com/puppetlabs/mcollective-logstash-audit
https://github.com/search?q=mcollective

Chapter	6.	Maintenance
Now	that	you	have	MCollective	working,	and	have	an	idea	of	how	powerful	MCollective
can	be,	let’s	go	over	some	of	the	steps	involved	in	maintaining	and	debugging
MCollective.

Time	Sync
Many	of	the	weirder	problems	end	up	being	due	to	the	clients	and	servers	having	a
different	idea	of	what	time	it	is.	Before	you	take	any	other	debugging	steps,	ensure	that
your	systems	have	a	consistent	view	of	the	time:	

client$	date	+%s

1396310400

server$	date	+%s

1396310402

Allowing	for	the	difference	in	time	taken	for	you	to	run	the	commands	on	these	two
systems,	they	should	be	within	a	few	seconds.	In	modern	NTP	time-sync,	1/100	of	a
second	is	a	considerable	gap,	so	most	systems	should	be	easily	within	the	same	second.	

The	reason	this	is	important	is	due	to	how	messages	are	constructed.	Every	MCollective
message	sent	out	contains	the	current	timestamp	and	a	ttl	to	indicate	how	long	the
message	is	valid:

{

		:msgtime					=>	1396310400,

		:ttl									=>	60,

		:filter				=>	{

																			"fact"			=>	[{:fact=>"operatingsystem",	:value=>"Debian"}],

																			"agent"		=>	["package"]

																	},

	:senderid				=>	"desktop.example.net",

	:msgtarget			=>	"/topic/mcollective.discovery.command",

	:agent:						=>	'discovery',

	:collective'	=>	'mcollective',

	:body								=>	body,

	:hash								=>	"88dd360f13614b7db83616ba49deb130",

	:requestid			=>	"70141ca8a465954706a51ef6a7d4914e"

}

In	the	situation	described	by	this	packet,	the	request	is	valid	from	1396310400	until
1396310460.	If	your	server	receives	a	request	from	a	client	too	far	in	the	past,	then	the
request	will	be	ignored	because	the	TTL	has	already	expired.	Even	weirder	problems	can
occur	with	clients	in	the	future,	from	the	server’s	perspective.	It	is	absolutely	essential	that
all	of	the	systems	in	the	collective	have	a	consistent	view	of	the	time.

Note

We	aren’t	talking	about	timezones	here.	Computers	track	time	in	UTC	time	and	display	it
to	you	in	the	timezone-offset	you	have	configured	in	your	preferences.	To	computers,	all
time	is	stored	and	compared	in	UTC	time,	as	represented	here.	The	commands	just	shown
give	the	UTC	epoch	time,	or	seconds	since	January	1,	1970	UTC.

If	you	know	how	to	translate	that	number	back	to	Pacific	standard	time,	then	you’ll	know
the	exact	minute	I	wrote	this	particular	chapter.

Best	practice	is	to	have	Puppet,	Chef,	or	any	other	configuration	management	tool	ensure
that	NTP	is	configured	properly	on	every	node.

Keeping	Sessions	Alive
If	you	have	a	firewall	or	flow-tracking	switch	(e.g.,	Juniper)	between	your	servers	and
your	middleware,	you	may	need	to	tweak	the	settings	to	ensure	the	connections	remain
open.	

MCollective’s	STOMP	sessions	are	idle	unless	a	client	is	actively	issuing	requests.
MCollective	does	set	the	keep-alive	flag	on	the	TCP	session,	but	many	operating
systems	send	the	first	keep-alive	packet	long	after	most	firewalls	drop	the	session	from
their	active	table.	The	server	will	not	be	aware	that	the	session	has	been	cut.	The
middleware	will	not	learn	until	it	tries	to	forward	a	message	from	a	client.

STOMP	heartbeats	were	introduced	with	STOMP	1.1	and	have	generally	solved	this
problem.	The	configuration	provided	in	Chapter	2	utilizes	these	heartbeats,	and	should
keep	the	connection	alive.

Prior	to	STOMP	heartbeats,	to	keep	the	sessions	alive,	one	had	to	configure	the	server	to
send	updated	registration	information	on	a	period	shorter	than	the	time	the	firewall	will
time	out	the	session.	In	most	cases,	every	10	minutes	was	more	than	sufficient:

#	server.cfg

registerinterval	=	600		#	seconds

The	default	registration	agent	is	AgentList,	which	sends	a	list	of	only	the	installed	server
plugins.	You	can	create	your	own	registration	agents	to	send	other	information,	as	we’ll
document	in	Chapter	21.

Activating	Changes
After	any	server	or	agent	configuration	change,	you’ll	need	to	restart	mcollectived	before
the	changes	will	be	visible:

$	sudo	service	mcollective	restart

Shutting	down	mcollective:																																	[OK]

Starting	mcollective:																																						[OK]

You	can	send	the	mcollectived	daemon	a	to	make	it	reload	agent	plugins.	On	most
platforms	you	can	do	this	with	pkill.	The	-x	option	can	be	used	to	ensure	you	don’t	kill
any	other	program	with	a	partial	name	match.	The	following	command	will	cause
MCollective	to	reload	the	agents,	but	also	report	back	any	failures	from	the	pkill
command:

$	sudo	pkill	-USR1	-x	mcollectived	||	echo	"pkill	failed:	$?"

Note	that	this	won’t	report	back	any	failures	from	MCollective.	For	that	purpose,	you’d
have	to	read	the	log	files:

$	tail	-20	/var/log/mcollective.log

Server	Statistics
In	addition	to	the	list	of	agents	available	on	a	server,	MCollective	also	reports	back	a	fair
number	of	statistics	from	the	inventory	request:

$	mco	inventory	heliotrope

Inventory	for	heliotrope:

			Server	Statistics:

																						Version:	2.5.3

																			Start	Time:	Wed	Jul	28	23:27:32	-0700	2014

																		Config	File:	/etc/mcollective/server.cfg

																		Collectives:	mcollective

														Main	Collective:	mcollective

																			Process	ID:	29427

															Total	Messages:	5

						Messages	Passed	Filters:	5

												Messages	Filtered:	0

													Expired	Messages:	0

																	Replies	Sent:	4

									Total	Processor	Time:	2.66	seconds

																		System	Time:	3.65	seconds

			Agents:

						discovery							filemgr									nettest

						package									puppet										rpcutil

						service

...several	hundred	other	lines	of	output

As	the	output	of	inventory	is	very	verbose,	I	rather	like	using	awk	to	stop	after	the	first
blank	line:

$	mco	inventory	heliotrope	|	awk	'/Server/','/^$/'

Logging
The	following	are	defaults	for	logging	used	if	not	overridden	in	the	server.cfg	file:

logger_type	=	file

loglevel	=	info

logfile	=	/var/log/mcollective.log

keeplogs	=	5

max_log_size	=	2097152

logfacility	=	user

In	this	default	configuration,	mcollectived	writes	its	own	logs	to	disk	and	does	its	own
log	rotation.	It	keeps	five	logs	on	disk,	and	rotates	when	each	log	reaches	2	MB.

This	may	work	for	many	underutilized	hardware	systems	but	may	be	nonoptimal	in	many
situations	where	storage	is	expensive	or	the	systems	are	virtualized.	Personally,	I	prefer	to
utilize	the	existing	logging	and	analysis	infrastructure	and	recommend	the	following
settings:

logger_type	=	syslog

loglevel	=	debug

logfacility	=	daemon

These	settings	are	documented	in	detail	at
http://docs.puppetlabs.com/mcollective/configure/server.html#logging	and
http://docs.puppetlabs.com/mcollective/configure/client.html#logging.

http://docs.puppetlabs.com/mcollective/configure/server.html#logging
http://docs.puppetlabs.com/mcollective/configure/client.html#logging

Monitoring	Servers
There	are	two	ways	to	check	whether	MCollective	servers	are	alive:	actively	and
passively.

An	active	check	would	be	to	issue	a	call	to	an	agent	available	on	every	node	and	validate
the	results.	This	could	be	something	as	simple	as	mco	ping,	which	is	a	low-level
connectivity	test	that	doesn’t	require	authentication	or	authorization.	Or	you	could	test	to	a
specific	plugin	(e.g.,	an	NRPE	test).	We	provide	a	script	to	do	this	in	Chapter	19.

A	passive	check	would	be	to	listen	to	the	registration	agent	topic	and	look	for	servers	that
haven’t	checked	in	recently.	We	discuss	how	to	build	a	registration	agent	in	Chapter	21.
An	example	of	how	to	check	this	with	Nagios	can	be	found	at	Puppet	Labs	wiki
AgentRegistrationMonitor.

http://bit.ly/1wWHpCB

Chapter	7.	Configuration	Management
By	now	you	must	be	thinking	to	yourself,	“Wow,	this	is	a	lot	of	configuration	data.”	Yes,
you	are	absolutely	right.

It	is	best	to	use	Puppet,	Chef,	or	another	configuration-management	system	to	deploy	and
maintain	MCollective.	As	you	proceed	through	this	book,	you	will	be	constantly	tweaking
the	MCollective	configuration	and	adding	new	plugins.	Most	changes	will	need	to	be
synchronized	across	servers,	yet	many	servers	will	also	have	customized	settings.	In
previous	sections,	we	have	gone	over	how	to	set	up	MCollective	by	hand,	but	across	many
systems	it	becomes	a	lot	of	work.	It’s	best	to	manage	your	MCollective	installation	with
configuration	management.

As	the	installation	documentation	on	the	Puppet	Labs	website	says:

[MCollective]	is	the	textbook	example	for	why	you	need	config	management:

It	has	multiple	components	that	run	on	many	different	machines.
It	has	pieces	of	global	configuration	that	must	be	set	harmoniously,	everywhere.
Most	of	its	settings	are	identical	for	machines	in	a	given	role	(e.g.	every	server),	but
some	of	its	settings	have	per-system	differences.	This	is	easy	to	manage	with	a
template,	and	incredibly	frustrating	to	manage	by	hand.
Its	configuration	will	change	over	time,	and	the	changes	affect	many	many	systems	at
once.	
New/updated	agents	must	be	deployed	to	all	servers;	when	a	new	admin	user	is
introduced,	every	server	must	be	made	aware	of	their	permissions.

In	summary,	its	configuration	requirements	are	strict,	and	configuration	drift	will	cause
it	to	stop	working.	Use	Puppet.

Tip

For	what	it	is	worth,	you	could	just	as	easily	use	Chef,	Salt,	Cfengine,	Ansible,	or	another
configuration-management	tool	to	install	and	configure	MCollective.	We	focus	on	Puppet
since	MCollective	and	Puppet	are	both	maintained	by	Puppet	Labs,	and	their	integration	is
something	you	can	get	support	for.

Documentation	for	Chef	can	be	found	in	“Chef”.

If	you	are	already	invested	in	a	different	configuration	management	tool,	there	is	no	need
to	worry.	MCollective	does	not	depend	on	Puppet.	You	can	adapt	the	configuration	recipes
from	this	book	to	your	chosen	tool	or	look	to	see	if	someone	has	already	provided	a	plugin
for	you.

http://bit.ly/1wWHENY

Puppet
I	have	created	a	Puppet	module	for	installing	and	configuring	MCollective.	This	module
implements	every	feature	discussed	in	the	book	with	a	minimum	of	external	dependencies.
Every	chapter	following	this	one	will	contain	configuration	examples	which	utilize	this
module.		

Note

You	might	notice	that	there	is	a	puppetlabs-mcollective	module	available	on	the	Puppet
Forge.	We	are	not	using	this	module	for	teaching	MCollective	for	several	reasons:

If	you	don’t	override	some	defaults	values,	the	setup	will	use	well-known	usernames
and	passwords.	A	mistype	would	make	your	setup	vulnerable	to	attack.
It	doesn’t	separate	client	and	server	permissions,	which	creates	a	security	problem	if
any	server	is	compromised	or	untrustable.
It	doesn’t	separate	client	permissions	and	broker	link	permissions.
The	Puppet	Labs	module	has	numerous	external	dependencies	that	could	be	distracting
to	set	up	when	trying	to	follow	the	book.

The	module	provided	in	this	book	allows	a	simple	setup	to	work	immediately	and	then	the
ability	to	add	more	as	you	read	each	chapter	in	the	book.

Installing	the	Puppet	Module
So	there	are	two	different	ways	to	install	the	Puppet	module	to	manage	MCollective.	

Using	r10k
If	you	already	use	r10k,	you	can	get	a	configuration	and	Puppetfile	from
http://github.com/jorhett/learning-mcollective	to	install	the	modules	for	you.	This	will	also
pull	down	an	example	Hiera	configuration	and	data	files.	As	this	is	not	really	an
MCollective	concern,	documentation	for	the	r10k	setup	can	be	found	in	“Using	r10k	to
install	Puppet	Modules”.	

http://github.com/jorhett/learning-mcollective

Straight	from	GitHub
If	you	don’t	use	r10k,	you	can	pull	the	module	down	from	GitHub,	like	so:	

$	git	clone	git://github.com/jorhett/puppet-mcollective.git

Cloning	into	'puppet-mcollective'...

remote:	Counting	objects:	65,	done.

remote:	Compressing	objects:	100%	(56/56),	done.

remote:	Total	65	(delta	11),	reused	59	(delta	5)

Receiving	objects:	100%	(65/65),	34.83	KiB,	done.

Resolving	deltas:	100%	(11/11),	done.

If	you	have	your	own	Puppet	module	forge	internally,	the	following	optional	step	will
build	a	module	package	appropriate	for	uploading	to	the	forge:

$	cd	puppet-mcollective

$	puppet	module	build

Notice:	Building	/home/jorhett/src/puppet-mcollective	for	release

Module	built:	

/home/jorhett/src/puppet-mcollective/pkg/jorhett-mcollective-0.1.0.tar.gz

Or	you	can	move	the	module	directly	into	your	modulepath:
$	mkdir	-p	/etc/puppet/environments/learning_mcollective/modules

$	mv	puppet-mcollective	

		/etc/puppet/environments/learning_mcollective/modules/mcollective

You’ll	need	to	get	the	Puppet	Labs	stdlib	module	if	you	don’t	have	it	already:
$	puppet	module	install	puppetlabs-stdlib	

		--modulepath=/etc/puppet/environments/learning_mcollective/modules

Notice:	Preparing	to	install	into	

/etc/puppet/environments/learning_mcollective/modules…

Notice:	Downloading	from	https://forgeapi.puppetlabs.com…

Notice:	Installing—do	not	interrupt…

/etc/puppet/environments/learning_mcollective/modules

└──	puppetlabs-stdlib	(v4.2.1)

Warning

We	created	a	new	environment	specific	to	testing	MCollective	here.	The	example	assumes
you	are	using	directory	environments	as	documented	at	Puppet	Docs:	Directory
Environments	or	the	older	config	file–based	environments.	As	both	config	file
environments	and	“no	environment”	are	scheduled	for	deprecation,	it	is	best	to	do	all	new
deployments	in	the	manner	documented	at	http://bit.ly/1wWJpuv.

Feel	free	to	place	these	modules	in	another	environment	name	if	you	already	have	an
appropriate	testing	environment.	The	environment	name	is	not	special.

In	the	next	section,	you’ll	define	the	site	configuration	in	the	manifests	and/or	Hiera	data.

http://bit.ly/1wWJpuv
http://bit.ly/1wWJpuv

Configuring	MCollective	Using	Puppet
The	following	Puppet	manifest	will	perform	a	basic	MCollective	setup	and	initialization
for	you.	If	you	don’t	yet	use	Puppet,	consider	how	easy	it	is	to	replace	the	entire	Chapter	2
section	of	the	book	with	these	small	recipes.

This	module	contains	all	of	the	manifests	and	templates	shown	in	this	book,	plus	examples
of	ActionPolicy	configurations.

Note

This	module	could	be	extended	to	cover	more	middleware	configurations	if	it	relied	on
other	Forge	modules	for	managing	ActiveMQ	and	RabbitMQ	configurations.	For	the
purposes	of	simple,	one-shot	setup,	I	wanted	to	focus	on	a	simplified	configuration	that
serviced	only	MCollective	clients	and	servers.	If	you	prefer	to	manage	the	middleware
configuration	yourself,	simply	don’t	use	the	mcollective::middleware	class	in	this	book.

For	a	simple	example,	the	following	declarative	policy	could	be	used	to	configure	your
nodes:

manifests/site.pp:

#	This	sets	the	defaults	for	all	subclasses

node	default	{

		class	{	'::mcollective':

				hosts											=>	['activemq.example.net'],

				client_password	=>	'Client	Password	',

				server_password	=>	'Server	Password',

				psk_key									=>	'Pre-Shared	Key',

		}

		#	Every	node	installs	the	server

		include	mcollective::server

}

#	This	node	is	the	ActiveMQ	broker

node	'activemq.example.net'	inherits	default	{

		include	mcollective::middleware

}

#	This	node	is	my	admin	host	where	I'll	submit	requests

node	'admin.example.net'	inherits	default	{

		include	mcollective::client

}

For	most	nodes	on	your	network,	you	would	use	only	the	mcollective	and
mcollective::server	classes.	You	should	put	the	mcollective::client	class	on	any
hosts	from	which	you	wish	to	submit	requests.

Hiera	Configuration	Data
You	can	supply	parameters	to	each	of	the	classes	just	described,	or	you	can	simply	define
all	of	the	settings	in	Hiera.	What	follows	is	the	most	minimal	set	of	parameters	you’ll	need
to	supply.	

First,	you	enable	class	assignment	from	Hiera	in	the	site	manifest:
#	manifests/site.pp

hiera_include('classes')

Then	you	set	up	the	Hiera	data	hierarchy	to	look	for	data	in	files	based	on	the	hostname
first,	with	a	fallback	to	a	common	file:

#	/etc/puppet/hiera.yaml

:backends:

				-	yaml

:yaml:

				:datadir:	'/etc/puppet/environments/learning_mcollective/hieradata'

:hierarchy:

				-	hostname/%{::hostname}

				-	common

Put	all	shared	parameters	in	the	common	file.	In	this	case	we	define	that	every	node	will
load	the	server:

#	hieradata/common.yaml

classes:

		-	mcollective::server

mcollective::hosts:

		-	'activemq.example.net'

mcollective::client_password:	'Client	Password	'

mcollective::server_password:	'Server	Password'

mcollective::psk_key								:	'Pre-Shared	Key'

Finally,	we	create	two	files	that	contain	classes	specific	to	their	hostname:
#	hieradata/hostname/activemq.yaml

classes:

		-	mcollective::middleware

#	hieradata/hostname/admin.yaml

classes:

		-	mcollective::client

Hiera

Hiera	is	a	key/value	lookup	tool	for	configuration	data,	built	to	let	you	define	Puppet	configuration	data	without
repeating	yourself.

If	you	are	not	familiar	with	using	Hiera,	the	best	reference	can	be	found	at	Hiera	Overview.	In	particular,	read
carefully	“Usage	with	Puppet”	for	how	Puppet	modules	automatically	include	Hiera	data.

The	MCollective	Puppet	module	has	dozens	of	parameters	available	to	customize	the
settings	to	your	specific	needs.	This	module	can	be	used	to	create	high-security
configurations	or	build	a	large	distributed	network	of	brokers.	What	follows	is	a	much
more	complex	example	that	does	the	following:

1.	 Directs	clients	to	their	local	broker	(depending	on	the	Hiera	hierarchy)
2.	 Sets	up	site→site	links	between	the	brokers
3.	 Uses	SSL	encryption	for	all	connections
4.	 Sets	up	file	logging	at	debug	loglevel
5.	 Loads	up	package,	service,	and	Puppet	agents	at	both	sites

http://bit.ly/1wWKnHl
http://bit.ly/1wWKrGT

6.	 Installs	the	client	programs	only	on	machines	at	site1

The	following	Hiera	files	break	up	the	configuration	between	the	London	and	Philadelphia
offices.	Each	office	has	its	own	ActiveMQ	server.	All	of	the	admins	are	in	London,	so	the
client	packages	are	loaded	there.	All	other	parameters	are	the	same	for	the	MCollective
framework:

#	/etc/puppet/hiera.yaml

:backends:

				-	yaml

:yaml:

				:datadir:	'/etc/puppet/environments/learning_mcollective/hieradata'

:hierarchy:

				-	hostname/%{::hostname}

				-	domain/%{::domain}

				-	common

#	hieradata/hostname/activemq.yaml

classes:

		-	mcollective::middleware

#	hieradata/domain/philadelphia.example.net.yaml

mcollective::hosts:

		-	'activemq.philadelphia.example.net'

#	hieradata/domain/london.example.net.yaml

mcollective::hosts:

		-	'activemq.london.example.net'

classes:

		-	mcollective::client

mcollective::client::package_ensure:	'latest'

mcollective::plugin::clients:

		package:

				version:	'latest'

		service:

				version:	'latest'

		puppet:

				version:	'latest'

#	hieradata/common.yaml

classes:

		-	mcollective::server

mcollective::hosts:

		-	'activemq.london.example.net'

		-	'activemq.philadelphia.example.net'

mcollective::collectives:

		-	'mcollective'

		-	'london'

		-	'philadelphia'

mcollective::client_password:	'Client	Password	'

mcollective::server_password:	'Server	Password'

mcollective::broker_password:	'Broker	Password'

mcollective::psk_key								:	'Pre-Shared	Key'

mcollective::connector									:	'activemq'

mcollective::connector_ssl					:	true

mcollective::connector_ssl_type:	'anonymous'

#	Server	configuration

mcollective::server::logger_type:	'file'

mcollective::server::log_level		:	'debug'

#	Client	configuration

mcollective::client::package_ensure:	'absent'

mcollective::client::unix_group				:	'wheel'

#	Middleware	configuration

mcollective::middleware::keystore_password		:	'Keystore	Password'

mcollective::middleware::truststore_password:	'Truststore	Password'

#	Plugins	to	install

mcollective::plugin::agents:

		package:	{}

		service:	{}

		puppet	:

				version:	'latest'

Don’t	worry	about	understanding	this	complex	example	just	yet	—	this	is	skipping	way
ahead	into	chapters	much	later	in	the	book!	We’ll	be	spending	the	remainder	of	this	book
walking	you	through	different	things	you	can	achieve	with	MCollective,	and	each	and
every	section	will	contain	Puppet/Hiera	parameters	you	can	apply	to	enable	those	features.

Sharing	Facts	with	Puppet
As	discussed	in	“Filters”,	one	of	the	most	flexible	ways	to	match	related	groups	of
systems	is	by	facts.	The	easiest	way	to	get	facter	facts	for	MCollective	is	to	let	Puppet
supply	them	for	you.	This	is	much	better	than	the	simple	cron	method	we	showed	you
earlier,	as	it	allows	you	to	add	both	custom	Puppet	facts	and	variables	to	the	list.	

To	get	this	more	flexible	usage,	add	the	following	to	your	Puppet	manifests:
node	myhost.example.net	{

		include	mcollective::server

		include	mcollective::facts

}

Or	add	the	following	if	you’re	using	Hiera:
#	hieradata/common.yaml

classes:

		-	mcollective::server

		-	mcollective::facts

Warning

Did	you	enable	fact	creation	using	the	cron	script	we	documented	in	“Facts”?

If	so,	you’ll	want	to	remove	the	/etc/cron.d/facts.sh	cron	script.	Otherwise,	Puppet	and
cron	will	keep	overwriting	each	other’s	results.	Puppet	has	more	facts	available	and	more
flexibility	in	adding	new	facts	from	Puppet	variables,	so	this	is	the	better	of	the	two
choices.

Installing	Agents	with	Puppet
Here	are	some	example	manifests	for	adding	agents	to	your	systems,	assuming	the	agent
packages	are	available	in	a	package	repository.	For	the	first	one,	we	show	you	how	to
define	an	explicit	version,	but	this	is	not	necessary:	

node	nodename	{

		mcollective::plugin::agent	{	'filemgr':

				version	=>	'1.0.1-1',

		}

}

If	you	use	Hiera,	this	can	be	done	even	easier.	The	module	we	provided	looks	for	agent
and	client	names	to	be	defined	in	YAML	and	installs	them	using	the	parameter	hash
supplied.	The	following	Hiera	data	is	identical	to	the	Puppet	policy	we	defined
previously:	

mcollective::plugin::agents:

		filemgr:

				-	version:	1.0.1-1

It	must	be	broken	out	exactly	as	it	is	here.	The	data	type	for
mcollective::plugin::agents	is	a	list	of	agents	to	install.	Each	agent	should	have	a
dictionary	of	attributes.	In	this	sense,	the	Hiera	data	is	identical	to	the	declarative
invocation	shown	earlier.

You	can	also	define	an	array	of	dependencies	for	an	agent.	Here’s	an	example	where	we
want	to	install	the	MCollective	agent	for	Puppet,	but	only	if	the	Puppet	package	is
installed.	We	look	up	the	name	of	the	package	from	a	variable	in	the	puppet::client
class	to	ensure	we	get	the	appropriate	package	name	for	each	operating	system:

node	nodename	{

		mcollective::plugin::agent	{	'puppet':

				version						=>	latest,

				dependencies	=>	[Package[$puppet::client::package_name]],

		}

}

Naturally,	you	can	express	the	exact	same	idea	in	Hiera	data:
mcollective::plugin::agents:

		puppet:

				version:	latest

				dependencies:

						-	Package[%{puppet::client::package_name}]

On	hosts	where	you	execute	the	client	commands,	you	should	install	the	client	plugins.
Here’s	a	simple	example	where	we	install	client	plugins	using	the	default	values:

node	nodename	{

		mcollective::plugin::client	{	'filemgr':	}

		mcollective::plugin::client	{	'nettest':	}

		mcollective::plugin::client	{	'package':	}

		mcollective::plugin::client	{	'service':	}

		mcollective::plugin::client	{	'puppet':		}

}

When	using	Hiera	to	load	agents	or	clients,	specify	default	values	with	an	empty
dictionary.	Here	is	a	complete	Hiera	example	showing	both	agents	and	client	plugins,
some	with	versions	and	dependencies	and	some	without:

mcollective::plugin::agents:

		filemgr:

				-	version:	1.0.1-1

		nettest:	{}

		package:	{}

		service:	{}

		puppet:

				version					:	latest

				dependencies:

						-	Package[%{puppet::client::package_name}]

mcollective::plugin::clients:

		filemgr:	{}

		nettest:	{}

		package:	{}

		service:	{}

		puppet:

				version:	latest

I’m	sure	you’ve	noticed	by	now	that	Hiera	uses	plural	names	(agents	and	clients)	but	the
declarative	policy	invocation	uses	a	single	name	(agent	or	client).	This	should	be	intuitive
to	remember,	since	the	single	name	loads	a	single	plugin,	whereas	the	Hiera	plural	name
accepts	a	list	of	plugins.

Validating	the	Installation
Run	the	puppet	client	to	reconfigure	one	of	your	nodes:

$	puppet	agent	--test	--environment	learning_mcollective

Now,	verify	that	Puppet	has	configured	the	servers	and	clients	as	you	expect.	Test	that
your	nodes	are	reachable	the	same	way	we	did	in	“Testing	Your	Installation”:

$	mco	ping

sunstone																																	time=88.09	ms

geode																																				time=126.22	ms

fireagate																																time=126.81	ms

heliotrope																															time=127.32	ms

----	ping	statistics	----

4	replies	max:	127.32	min:	88.09	avg:	117.11

If	you	get	back	a	list	of	each	server	connected	to	your	middleware	and	its	response	time,
then	congratulations!	You	have	successfully	deployed	MCollective	using	Puppet.	If	it
doesn’t	work,	check	out	“Troubleshooting”	and	validate	the	settings	used	in	this	chapter.

Debugging
Here	we’ll	go	through	some	common	errors	you	might	encounter	with	MCollective	and
Puppet	interaction.

Unable	to	match	server	with	class
If	you	are	unable	to	match	a	host	using	the	--with-class	filter	option,	the	first	thing	to	do
is	get	an	inventory	of	the	node	with	mco	inventory	hostname.	If	you	find	that	the
inventory	does	not	list	any	classes	for	a	host,	then	the	classes.txt	file	that	mcollectived	is
trying	to	read	is	not	being	written	to	by	Puppet.	

The	classes.txt	file	is	written	out	by	the	Puppet	agent	during	each	run.	In	the	[agent]
section	of	puppet.conf	is	a	variable	classfile.	This	defaults	to	$statedir/classes.txt	and
$statedir	defaults	to	$vardir/state.	MCollective	defaults	to	the	same	location	as	Puppet
does	on	every	platform.

However,	this	variable	can	be	overridden	in	both	puppet.conf	and	mcollective/server.cfg.	If
you	do	not	see	Puppet	classes	in	the	output	of	an	inventory	request	for	a	puppetized	node,
you	should	check	the	following	two	values	and	ensure	that	they	match	up:

$	sudo	puppet	apply	--configprint	classfile

/var/lib/puppet/state/classes.txt

$	grep	classesfile	/etc/mcollective/server.cfg

$	mco	rpc	rpcutil	get_config_item	item=classesfile	-I	heliotrope

heliotrope

			Property:	classesfile

						Value:	/var/lib/puppet/state/classes.txt

If	the	classfile	from	Puppet	matches	this,	then	MCollective	doesn’t	need	an	override	in
server.cfg.	If	any	different	value	is	found,	you	may	want	to	set	them	explicitly	to	match	in
both	files:

#	/etc/puppet/puppet.conf

[agent]

		classfile	=	$statedir/classes.txt

#	/etc/mcollective/server.cfg

classesfile	=	/var/lib/puppet/state/classes.txt

Unable	to	match	server	with	fact
If	you	are	unable	to	match	a	host	using	the	--with-fact	filter	option,	the	first	thing	to	do
is	get	an	inventory	of	the	node	with	mco	inventory	hostname.	If	you	find	that	the
inventory	does	not	list	any	facts	for	a	server,	then	the	facts.yaml	file	that	mcollectived	is
trying	to	read	is	not	being	written	to	by	facter	or	Puppet.	

For	MCollective	to	know	about	facts,	a	parameter	named	plugin.yaml	must	be	defined	in
mcollective’s	server.cfg.	This	parameter	names	a	file	that	contains	the	server’s	facts	in
YAML	format,	usually	/etc/mcollective/facts.yaml:

#	/etc/mcollective/server.cfg

factsource	=	yaml

plugin.yaml	=	/etc/mcollective/facts.yaml

The	target	for	the	plugin.yaml	parameter	could	include	multiple	filenames	separated	by	a
colon	in	Unix	systems,	or	a	semicolon	for	Windows	servers.	If	the	facts	do	not	show	up
after	restarting	mcollectived,	then	the	most	likely	problem	is	the	formatting	of	the	YAML
within	the	file.

The	most	basic	way	to	collect	system	facts	was	described	in	“Facts”.	A	more	elegant	and
flexible	solution,	which	can	use	Puppet-generated	facts	or	values,	was	introduced	earlier
in	this	chapter	in	“Sharing	Facts	with	Puppet”.	It	doesn’t	matter	how	you	generate	your
system	facts,	as	long	as	they	are	written	in	YAML	format	to	the	listed	file.

Confirm	that	one	of	the	following	is	configured	to	write	out	facts	to	this	file:

A	cron	job	that	generates	YAML	(as	described	in	“Facts”)
A	puppet	module	that	writes	out	facter	facts	and	other	variables	(as	described	in
“Sharing	Facts	with	Puppet”)
Some	other	script	or	process	you	have	that	can	generate	YAML	key/value	pairs

You	can	install	facts	plugins	other	than	YAML	from	the	Puppet	Labs	Forge,	GitHub,	or
other	repositories,	as	discussed	in	“Finding	Community	Plugins”.	You	can	also	build	your
own,	as	documented	in	Chapter	20.

Warning

There	is	a	plugin	named	mcollective-facter-facts	on	the	Puppet	Labs	GitHub.	This
agent	can	be	slow	to	run,	as	it	invokes	Facter	for	each	evaluation.	This	has	been	observed
to	cause	problems	with	nodes	going	offline	randomly.	The	plugin	used	here	to	load	facts
from	a	YAML-format	text	file	works	much	better.

Unable	to	match	server	by	hostname
If	you	are	unable	to	match	a	host	using	the	--with-identity	or	-I	filter	option,	your	first
action	should	be	to	confirm	that	mcollectived	is	running	on	the	server.	This	is	the	most
likely	reason	for	a	failed	response	by	name.	

The	next	step	is	to	check	and	see	what	the	configured	identity	in	the	server	configuration
might	be:

$	grep	identity	/etc/mcollective/server.cfg

#identity=

In	this	situation,	the	identity	is	not	hardcoded	in	the	server	configuration,	so	we’ll	have	to
use	a	different	fact	to	identify	the	node.

The	default	identity	for	the	node	is	the	output	of	the	hostname	command.	If	you	are	using
Puppet,	we	can	query	Puppet	for	its	certname,	which	we	can	use	as	a	filter	to	query	the
node	and	gather	its	identity.

On	the	node	with	the	MCollective	server,	run	this	command:
$	sudo	puppet	apply	--configprint	certname

heliotrope.example.net

On	a	node	with	the	MCollective	client	installed,	run	this	command:
$	mco	rpc	rpcutil	get_config_item	item=identity	--wf	\

		clientcert=heliotrope.example.net

heliotrope

			Property:	identity

						Value:	heliotrope

Warning

No,	that’s	not	a	misprint.	The	configuration	variable	certname	is	provided	by	Puppet	as

facter	fact	clientcert.	No	idea	why	the	inconsistency	—	it’s	just	how	Puppet	is.

Likewise,	you	can	use	any	other	fact	or	class	to	locate	the	node.	For	example,	there	are
only	two	CentOS	hosts	in	my	testlab:

$	mco	rpc	rpcutil	get_config_item	item=identity	--wf	operatingsystem=CentOS

Discovering	hosts	using	the	mc	method	for	2	second(s)	2

	*	[===>]	2	/	2

geode

			Property:	identity

						Value:	geode

heliotrope

			Property:	identity

						Value:	heliotrope

Summary	of	Value:

								geode	=	1

			heliotrope	=	1

Finished	processing	2	/	2	hosts	in	18.38	ms

If	you	want	an	MCollective	node	to	think	of	itself	with	a	different	name,	then	set
identity	in	server.cfg:

identity	=	iambatman

If	you	are	using	configuration	management	like	any	sane	person,	you	can	set	the	variable
from	the	configuration	management’s	knowledge	of	the	node.	For	example,	here’s	a
Puppet	template	fragment	to	ensure	the	MCollective	node	identifies	itself	by	the	Puppet
certificate	name,	rather	than	the	output	of	hostname:

identity	=	<%=	scope.lookup('::clientcert')	-%>

The	most	common	source	of	node	name	confusion	is	based	around	the	use	of	node	names
or	FQDNs	in	the	hostname	of	a	system.	For	example,	you	can	set	a	node’s	hostname	to
either	a	simple	name,	or	you	can	include	the	domain:

$	grep	HOSTNAME	/etc/sysconfig/network			#	RedHat	location

HOSTNAME=heliotrope

$	hostname

heliotrope

$	hostname	-f

heliotrope.example.net

With	this	setup,	the	MCollective	identity	was	heliotrope,	while	the	Puppet	certname	was
heliotrope.example.net.	You	can	resolve	that	mismatch	by	changing	/etc/sysconfig/network
on	RedHat-derived	systems	or	/etc/hostname	on	Debian-derived	systems	or	/etc/rc.conf	on
*BSD	systems.	Or	you	can	leave	it	alone,	so	long	as	you	understand	the	difference.

The	lack	of	matching	between	Puppet	and	MCollective	does	not	create	any	explicit
problems.	My	test	setup	uses	short	node	names	(e.g.,	“heliotrope”)	for	MCollective,	while
Puppet	always	uses	the	FQDN	of	the	host.

Absolutely	nothing	breaks	out	of	the	box	by	having	different	identities	in	Puppet	and
MCollective;	it	only	affects	how	you	might	write	your	custom	plugins.	In	my	opinion,	if
you	have	many	hosts	with	unique	hostnames,	you	can	save	a	lot	of	typing	by	leaving	the
domain	name	off	of	the	hostname.	Other	people	have	different	opinions	drawn	from	their
experiences.	YMMV	(your	mileage	may	vary).

Chef
You	can	find	a	Chef	cookbook	for	MCollective	at
http://community.opscode.com/cookbooks/mcollective	or	https://github.com/zts/cookbook-
mcollective.	You	should	download	the	cookbook	and	its	dependencies	to	your	local
cookbooks	repo.	For	example,	this	was	the	process	I	followed:

~$	cd	chef_repo/cookbooks

cookbooks$	knife	cookbook	site	download	mcollective

Downloading	mcollective	from	the	cookbooks	site	at	version	0.14.3

		to	/home/jorhett/chef-repo/mcollective-0.14.3.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/mcollective-0.14.3.tar.gz

cookbooks$	knife	cookbook	site	download	chef_handler

Downloading	chef_handler	from	the	cookbooks	site	at	version	1.1.6

		to	/home/jorhett/chef-repo/cookbooks/chef_handler-1.1.6.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/chef_handler-1.1.6.tar.gz

cookbooks$	knife	cookbook	site	download	apt

Downloading	apt	from	the	cookbooks	site	at	version	2.4.0

		to	/home/jorhett/chef-repo/cookbooks/apt-2.4.0.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/apt-2.4.0.tar.gz

cookbooks$	knife	cookbook	site	download	yum

Downloading	yum	from	the	cookbooks	site	at	version	3.2.2

		to	/home/jorhett/chef-repo/cookbooks/yum-3.2.2.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/yum-3.2.2.tar.gz

cookbooks$	tar	xzf	mcollective-0.14.3.tar.gz

cookbooks$	tar	xzf	chef_handler-1.1.6.tar.gz

cookbooks$	tar	xzf	apt-2.4.0.tar.gz

cookbooks$	tar	xzf	yum-3.2.2.tar.gz

Then	upload	the	cookbooks	to	your	server’s	cookbooks	repo.	For	example,	this	was	the
process	I	followed:

cookbooks$	knife	cookbook	upload	mcollective	chef_handler	apt	yum

Uploading	mcollective		[0.14.3]

Uploading	chef_handler	[1.1.6]

Uploading	apt										[2.4.0]

Uploading	yum										[3.2.2]

Uploaded	4	cookbooks.

http://community.opscode.com/cookbooks/mcollective
https://github.com/zts/cookbook-mcollective

Configuring	MCollective	using	Chef
Add	recipe[mcollective::server’]	to	the	run_list	for	every	node	and	recipe
[mcollective::client]	to	the	nodes	from	which	you’ll	issue	requests.	

Some	Chef	attributes	you	need	to	tune	to	match	the	setup	used	in	this	book	are:

Configuration	variable Value

['mcollective']['package']['version'] 2.6.0	or	higher

node['mcollective']['identity'] node['hostname']

node['mcollective']['group'] wheel

node['mcollective']['connector'] activemq

node['mcollective']['stomp']['hostname'] activemq.example.net

node['mcollective']['stomp']['port'] 61613

node['mcollective']['stomp']['username'] server

node['mcollective']['stomp']['password'] Server	Password	from	“Passwords	and	Keys”

node['mcollective']['stomp']['client_username'] client

node['mcollective']['stomp']['client_password'] Client	Password	from	“Passwords	and	Keys”

node['mcollective']['securityprovider'] psk

node['mcollective']['psk'] Pre-Shared	Key	from	“Passwords	and	Keys”

node['mcollective']['factsource'] yaml

node['mcollective']['enable_puppetlabs_repo'] true

For	example,	here	is	how	it	looked	when	I	set	up	a	single	node	to	be	an	MCollective
client:

~$	knife	node	edit	sunstone.example.net

{

		"name":	"sunstone.example.net",

		"chef_environment":	"_default",

		"normal":	{

				"mcollective":	{

						"connector":	"activemq",

						"securityprovider":	"psk",

						"psk":	"Pre-Shared	Key",

						"stomp":	{

								"hostname":	"activemq.example.net",

								"port":	"61613",

								"username":	"server",

								"password":	"Server	Password"

								"client_username":	"client",

								"client_password":	"Client	Password"

						}

				},

				"tags":	[

]

		},

		"run_list":	[

				"recipe[mcollective::client]",

				"recipe[mcollective::server]"

]

}

By	default,	this	Chef	cookbook	will	install	MCollective	packages	from	the	Puppet	Labs
APT	or	YUM	repositories.	If	you	have	your	own	package	repositories,	you	can	disable
this	behavior	by	setting	node['mcollective']['enable_puppetlabs_repo']	to	false.

You	can	find	all	possible	variables	to	tune	in	attributes/default.rb.

http://bit.ly/1wWO53B

Sharing	Ohai	Data	with	Chef
As	discussed	in	“Filters”,	one	of	the	most	flexible	ways	to	filter	requests	for	related	groups
of	systems	is	by	facts.	The	easiest	way	to	generate	useful	facts	for	MCollective	is	to	get
them	from	the	Chef	Ohai	data.	This	is	significantly	more	flexible	than	the	simple	cron
method	we	showed	you	previously.

This	Chef	cookbook	writes	out	a	facts.yaml	file	containing	facts	from	a	set	of	Ohai	keys.
This	means	that	Ohai	data	is	available	as	facts	for	use	in	filters	without	any	changes	on
your	part.

Warning

An	alternative	value	for	factsource	is	ohai.	This	method	is	similar	to	the	facter	source
for	facts	in	that	mcollectived	executes	the	command	periodically	and	caches	the
response.

In	practice,	this	has	the	same	problem	as	the	facter	source	—	many	queries	time	out
randomly	and	inconsistently.	I	recommend	staying	with	the	YAML	source	to	avoid	this
difficulty.

You	can	control	which	Ohai	keys	are	available	as	facts	by	adjusting	the	following
attribute:

node['mcollective']['fact_whitelist']	=	[

																																	'fqdn',	'hostname',	'domain',

																																	'ipaddress',	'macaddress',	'os',

																																	'os_version',	'platform',	'platform_version',

																																	'ohai_time',	'uptime',	'uptime_seconds',

																																	'chef_packages',	'keys',	'instmaint',

																																	'virtualization',	'cpu',	'memory'

]

Warning

Did	you	enable	fact	creation	using	the	cron	script	we	documented	in	“Facts”?

If	so,	you’ll	want	to	remove	the	/etc/cron.d/facts.sh	cron	script.	Otherwise,	Chef	and	cron
will	keep	overwriting	each	other’s	results.	The	Ohai	data	has	more	facts	available	and
more	flexibility	in	adding	new	facts	from	Chef	recipes,	so	this	is	the	better	of	the	two
choices.

Sharing	Chef	Roles	and	Recipes	as	Classes
This	Chef	cookbook	writes	out	the	roles	and	recipes	used	on	the	node	to	MCollective’s
classfile.	So	you	can	filter	your	requests	against	a	Chef	role	or	recipe	that	is	applied	to	a
node.

Installing	Agents	with	Chef
To	install	and	configure	MCollective	plugins	using	the	Chef	cookbook,	follow	these
steps:		

1.	 Install	the	agent	plugin	and	DDL	in	the	agent/	subdirectory	of	node['mcollective']
['site_plugins'].

2.	 Install	the	client	plugin	in	the	application/	subdirectory	of	node['mcollective']
['site_plugins'].

3.	 Install	any	supporting	libraries	in	the	util/	subdirectory	of	node['mcollective']
['site_plugins'].

4.	 Place	any	plugin	configuration	files	in	the	node['mcollective']['plugin_conf']
directory.

Make	a	change	to	the	server	configuration	so	that	the	server	daemon	will	be	restarted
when	the	recipe	runs.

Tip

The	default	location	to	install	agents,	applications,	DDLs,	and	such	is	site_plugins	at
/etc/mcollective/site_plugins/mcollective/.

The	default	location	for	plugin	configuration	files	is	plugin_conf	at
/etc/mcollective/plugin.d/.

TLS	Security	Limitations
Later	on	in	this	book,	you’ll	learn	how	to	enable	TLS	security	options.	The	author	of	the
MCollective	Chef	cookbook	intends	to	add	support	for	these	options,	but	they	were	not
available	at	the	time	this	book	was	written.	Check	the	cookbook’s	main	page	for	an	update
on	this.

This	will	be	covered	in	the	next	update	to	the	electronic	editions	of	Learning	MCollective.

https://github.com/zts/cookbook-mcollective

Validating	the	Installation
At	this	point,	you	should	verify	that	Chef	has	configured	the	servers	and	clients	as	you
expect.	Test	that	your	nodes	are	reachable	the	same	way	we	did	in	“Testing	Your
Installation”:

$	mco	ping

sunstone																																	time=88.09	ms

geode																																				time=126.22	ms

fireagate																																time=126.81	ms

heliotrope																															time=127.32	ms

----	ping	statistics	----

4	replies	max:	127.32	min:	88.09	avg:	117.11

If	you	get	back	a	list	of	each	server	connected	to	your	middleware	and	its	response	time,
then	congratulations!	You	have	successfully	deployed	MCollective	using	Chef.	If	it
doesn’t	work,	check	out	“Troubleshooting”	and	validate	the	settings	used	in	this	chapter.

Note

The	Chef	cookbook	for	MCollective	creates	configuration	files	that	look	very	different
from	the	examples	documented	in	this	book.	In	particular,	it	places	the	connector	settings
in	the	plugin	configuration	directory,	as	documented	in	Chapter	15.	This	is	a	different
approach	that	achieves	the	same	goal.	The	order	of	the	parameters	is	not	important.

Debugging
Here	we’ll	go	through	some	common	errors	you	might	encounter	with	MCollective	and
Chef	interaction.

Unable	to	match	server	with	class
If	you	are	unable	to	match	a	host	using	the	--with-class	filter	option,	the	first	thing	to	do
is	get	an	inventory	of	the	node	with	mco	inventory	hostname.	If	you	find	that	the
inventory	does	not	list	any	classes	for	a	host,	then	it	is	most	likely	that	mcollectived	is
not	configured	to	read	the	file	created	by	the	cookbook.	

The	MCollective	cookbook	writes	out	all	roles	and	recipes	to	the	file	specified	by
node['mcollective']['classesfile']	(default	/var/tmp/chefnode.txt)	during	each	run.
The	MCollective	configuration	in	/etc/mcollective/server.cfg	needs	to	reference	that
location	as	the	source	of	data	for	classes.

This	variable	can	be	overridden	in	both	the	Chef	node	attributes	and
/etc/mcollective/server.cfg.	If	you	do	not	see	the	Chef	roles	and	recipes	in	the	output	of	an
inventory	request	for	a	Chef	node,	you	should	check	the	following	two	values	and	ensure
that	they	match	up:

$	knife	node	show	heliotrope.example.net	--attribute	mcollective.identity

heliotrope.example.net:

			mcollective.identity:	heliotrope.example.net

$	grep	classesfile	/etc/mcollective/server.cfg

$	mco	rpc	rpcutil	get_config_item	item=classesfile	-I	heliotrope

heliotrope

			Property:	classesfile

						Value:	/var/tmp/chefnode.txt

If	the	classesfile	from	Chef	matches	this,	then	MCollective	doesn’t	need	an	override	in
server.cfg.	If	any	different	value	is	found,	you	should	set	them	explicitly	to	match	in	both
files:

$	knife	node	edit	heliotrope.example.net	(all	literal,	everything	except	$	bold)

		"normal":	{

				"mcollective":	{

						"classesfile":	"/var/tmp/chefnode.txt",

				}

		}

$	sudo	$EDITOR	/etc/mcollective/server.cfg

classesfile	=	/var/tmp/chefnode.txt

Unable	to	match	server	with	fact
If	you	are	unable	to	match	a	host	using	the	--with-fact	filter	option,	the	first	thing	to	do
is	get	an	inventory	of	the	node	with	mco	inventory	hostname.	If	you	find	that	the
inventory	does	not	list	any	facts	for	a	server,	then	the	facts.yaml	file	that	mcollectived	is
trying	to	read	is	not	being	written	to	by	Chef.	

For	MCollective	to	know	about	facts,	there	needs	to	be	a	parameter	named	plugin.yaml
defined	in	mcollective’s	server.cfg.	The	value	of	this	parameter	should	be	a	filename	that
lists	the	server’s	facts	in	YAML	format,	usually	/etc/mcollective/facts.yaml:

#	/etc/mcollective/server.cfg

factsource	=	yaml

plugin.yaml	=	/etc/mcollective/facts.yaml

The	target	for	the	plugin.yaml	parameter	could	include	multiple	filenames	separated	by	a
colon	in	Unix	systems	or	a	semicolon	for	Windows	servers.	If	the	facts	do	not	show	up
after	restarting	mcollectived,	then	the	most	likely	problem	is	the	formatting	of	the	YAML
within	the	file.

With	Chef,	the	MCollective	cookbook	writes	out	Ohai	keys	and	values	in	YAML	format	to
the	listed	file.

Confirm	that	one	of	the	following	is	configured	to	write	out	facts	to	this	file:

The	Chef	cookbook	writes	out	Ohai	keys	and	their	values	as	described	in	“Sharing
Ohai	Data	with	Chef”.
Some	other	script	or	process	generates	YAML	key/value	pairs.

You	can	install	facts	plugins	other	than	YAML	from	the	Chef	Site	Cookbooks,	GitHub,	or
other	repositories,	as	discussed	in	“Finding	Community	Plugins”.	You	can	also	build	your
own,	as	documented	in	Chapter	20.	

Chapter	8.	Controlling	Puppet	Agent
In	the	previous	chapter,	we	showed	how	to	use	Puppet	to	install	and	configure
MCollective.	In	this	chapter,	we’re	going	to	show	you	how	MCollective	can:

Use	the	Puppet	classes	applied	to	the	node	in	filters
Use	facts	known	by	Puppet	in	filters
Query,	start,	stop,	and	restart	the	Puppet	agent
Run	the	Puppet	agent	with	special	command-line	options
Query	and	make	changes	to	the	node	using	Puppet	resources

If	you	are	using	Puppet,	you	will	be	quite	happy	with	the	level	of	control	MCollective
gives	you.	MCollective	allows	new	ways	of	using	Puppet	that	simply	aren’t	possible	from
agent,	cron-run,	or	even	command-line	usage	of	Puppet.

Install	the	Puppet	Agent
The	first	thing	we	need	to	do	is	install	the	MCollective	Puppet	agent.	Installation	of	this	is
identical	to	the	agents	we	installed	in	Chapter	5.	Since	we	know	you	have	Puppet
installed,	we’ll	dispense	with	the	command-line	installation	and	show	you	to	do	it	with
Puppet:	

node	nodename	{

		mcollective::plugin::agent		{	'puppet':	}		#	for	servers

		mcollective::plugin::client	{	'puppet':	}		#	for	clients

}

If	you	use	Hiera,	you	can	install	the	agent	with	a	simple	listing	of	the	Puppet	agent	in	the
mcollective::plugin::agents	array.	In	this	example,	we’re	going	to	show	you	an
example	where	we	set	the	Puppet	agent	dependencies	to	ensure	that	the	Puppet	client	is
installed	on	the	host:

mcollective::plugin::agents:

		puppet:

				version:	latest

				dependencies:

						-	Package[%{puppet::client::package_name}]

						-	Service[%{puppet::client::service_name}]

mcollective::plugin::clients:

		puppet:

				version:	latest

Note

This	is	obviously	a	bit	redundant	(because	Puppet	is	enforcing	this	policy,	so	we	already
know	that	it	is	installed),	but	this	makes	for	a	good	example	because	the	MCollective
agent	for	Puppet	can’t	function	without	Puppet	installed.

Checking	Puppet	Status
Once	you	have	installed	the	MCollective	Puppet	agent	and	restarted	mcollectived	(which
the	Puppet	module	does	for	you),	you	should	install	the	MCollective	Puppet	client	on	one
of	your	admin	nodes.	The	first	thing	you	should	do	is	confirm	which	systems	have	the
MCollective	Puppet	agent	installed:

$	mco	find	--with-agent	puppet

geode

heliotrope

sunstone

$	mco	puppet	count

Total	Puppet	nodes:	3

										Nodes	currently	enabled:	3

									Nodes	currently	disabled:	0

Nodes	currently	doing	puppet	runs:	0

										Nodes	currently	stopped:	3

							Nodes	with	daemons	started:	1

				Nodes	without	daemons	started:	2

							Daemons	started	but	idling:	1

$	mco	puppet	summary

Summary	statistics	for	3	nodes:

																Total	resources:	▄▁▁▁▁▁▁▁▁▇▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	17.0
										Out	Of	Sync	resources:	▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	0.0
															Failed	resources:	▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	0.0
														Changed	resources:	▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	0.0
Config	Retrieval	time	(seconds):	▇▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	1.8
							Total	run-time	(seconds):	▇▇▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁		min:	0.0				max:	2.3
		Time	since	last	run	(seconds):	▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇▇		min:	221.0		max:	2.5k

You’ll	notice	that	these	Puppet	runs	are	very	fast,	with	fairly	few	resources	involved.	Only
a	few	resources	are	used	for	the	minimum	test	environment	for	the	MCollective	module
provided	in	this	book.	A	production	setup	will	usually	have	much	longer	run	times	and
thousands	or	tens	of	thousands	of	resources	involved.

Controlling	the	Puppet	Daemon
During	maintenance,	you	may	want	to	disable	the	Puppet	agent	on	certain	nodes.	When
you	disable	the	agent,	you	can	supply	a	message	letting	others	know	what	you	are	doing:

$	mco	puppet	disable	--with-identity	heliotrope	message="Disk	replacement"

	*	[==>]	1	/	1

Summary	of	Enabled:

			disabled	=	1

Finished	processing	1	/	1	hosts	in	85.28	ms

$	mco	puppet	runonce	--with-identity	heliotrope

	*	[===>]	1	/	1

heliotrope																															Request	Aborted

			Puppet	is	disabled:	'Disk	replacement'

			Summary:	Puppet	is	disabled:	'Disk	replacement'

Finished	processing	1	/	1	hosts	in	84.22	ms

Re-enabling	the	Puppet	agent	on	the	node	is	just	as	easy	as	disabling	it:
$	mco	puppet	enable	--with-identity	heliotrope

	*	[==>]	1	/	1

Summary	of	Enabled:

			enabled	=	1

Finished	processing	1	/	1	hosts	in	84.36	ms

Use	these	same	commands	to	enable	or	disable	the	Puppet	agent	on	nodes	matching	any
filter	criteria,	as	discussed	in	“Filters”.

Invoking	Ad	Hoc	Puppet	Runs
The	MCollective	Puppet	agent	provides	a	powerful	tool	for	controlling	Puppet	runs.	If	you
examine	help	for	the	Puppet	client,	you’ll	find	many	familiar	options	for	controlling
Puppet	runs,	exactly	as	you	would	from	the	command	line	with	puppet	agent	or	puppet
apply:	

$	mco	help	puppet

Application	Options

--force																			Bypass	splay	options	when	running

--server	SERVER											Connect	to	a	specific	server	or	port

--tags,	--tag	TAG									Restrict	the	run	to	specific	tags

--noop																				Do	a	noop	run

--no-noop																	Do	a	run	with	noop	disabled

--environment	ENVIRONMENT	Place	the	node	in	a	specific	environment	for	this	run

--splay																			Splay	the	run	by	up	to	splaylimit	seconds

--no-splay																Do	a	run	with	splay	disabled

--splaylimit	SECONDS						Maximum	splay	time	for	this	run	if	splay	is	set

--ignoreschedules									Disable	schedule	processing

--rerun	SECONDS											When	performing	runall	do	so	repeatedly

																																	with	a	minimum	run	time	of	SECONDS

The	simplest	invocation	is	naturally	to	run	Puppet	immediately	on	one	system:
$	mco	puppet	runonce	--with-identity	heliotrope

	*	[==>]	1	/	1

Finished	processing	1	/	1	hosts	in	193.99	ms

$	mco	puppet	status	--with-identity	heliotrope

	*	[==>]	1	/	1

			heliotrope:	Currently	idling;	last	completed	run	02	seconds	ago

Summary	of	Applying:

			false	=	1

Summary	of	Daemon	Running:

			running	=	1

Summary	of	Enabled:

			enabled	=	1

Summary	of	Idling:

			true	=	1

Summary	of	Status:

			idling	=	1

Finished	processing	1	/	1	hosts	in	86.43	ms

What	if	you	needed	to	run	Puppet	instantly	on	every	CentOS	host	to	fix	the	sudoers	file?
Notice	in	the	output	here	that	one	of	these	hosts	had	Puppet	agent	running,	and	the	other
did	not.	However,	both	ran	Puppet	when	we	asked	them	to:

$	mco	puppet	runonce	--tags=sudo	--with-fact	operatingsystem=CentOS

	*	[==>]	2	/	2

Finished	processing	2	/	2	hosts	in	988.26	ms

$	mco	puppet	status	--wf	operatingsystem=CentOS

	*	[==>]	2	/	2

					geode:	Currently	stopped;	last	completed	run	1	minutes	52	seconds	ago

heliotrope:	Currently	idling;	last	completed	run	2	minutes	21	seconds	ago

Summary	of	Applying:

			false	=	2

Summary	of	Daemon	Running:

			stopped	=	1

			running	=	1

Summary	of	Enabled:

			enabled	=	2

Summary	of	Idling:

				true	=	1

			false	=	1

Summary	of	Status:

			stopped	=	1

				idling	=	1

Finished	processing	2	/	2	hosts	in	42.17	ms

Warning

At	this	time,	it	is	only	possible	to	pass	options	like	tags	and	noop	if	the	Puppet	daemon	is
not	active	on	the	host.	In	order	to	run	Puppet	with	custom	command-line	options,	the
Puppet	daemon	needs	to	be	invoked	from	cron	periodically	or	only	run	using	MCollective.
If	you	leave	the	service	running,	you	can	still	use	runonce	or	runall,	but	you	cannot	pass
runtime	options.4

How	about	prompting	Puppet	to	update	immediately	on	every	host	in	your	environment?
If	you	are	using	only	local	manifests,	you	can	trigger	a	run	affecting	thousands	of	hosts.	In
most	server-based	environments,	the	Puppet	servers	won’t	be	able	to	handle	every	client
checking	in	for	a	fresh	catalog	all	at	the	same	time.	Likewise,	you	may	want	to	limit	the
number	of	hosts	evaluating	their	policies	at	the	same	time	to	prevent	too	many	of	them
being	out	of	service	simultaneously.

Here	is	any	example	where	we	slow	roll	Puppet	on	all	servers,	processing	only	two	at	a
time:	

$	mco	puppet	runall	2

2014-02-10	23:14:00:	Running	all	nodes	with	a	concurrency	of	2

2014-02-10	23:14:00:	Discovering	enabled	Puppet	nodes	to	manage

2014-02-10	23:14:03:	Found	39	enabled	nodes

2014-02-10	23:14:06:	geode	schedule	status:	Signalled	the	running	Puppet	Daemon

2014-02-10	23:14:06:	sunstone	schedule	status:	Signalled	the	running	

																					Puppet	Daemon

2014-02-10	23:14:06:	37	out	of	39	hosts	left	to	run	in	this	iteration

2014-02-10	23:14:09:	Currently	2	nodes	applying	the	catalog;	waiting	for	

																					less	than	2

2014-02-10	23:14:17:	heliotrope	schedule	status:	Signalled	the	running	

																					Puppet	Daemon

2014-02-10	23:14:18:	36	out	of	39	hosts	left	to	run	in	this	iteration

...etc

Run	Puppet	on	all	web	servers,	up	to	five	at	at	time:
$	mco	puppet	runall	5	--with-identity	/^web\d/

Note	that	runall	is	like	batch	except	that	instead	of	waiting	for	a	sleep	time,	it	waits	for
one	of	the	Puppet	daemons	to	complete	its	run	before	it	starts	another.	If	you	didn’t	mind
some	potential	overlap,	you	could	use	the	batch	options	instead:

$	mco	puppet	--batch	10	--batch-sleep	60	--tags	ntp

Manipulating	Puppet	Resource	Types
The	MCollective	Puppet	agent	is	so	powerful	that	you	can	make	arbitrary	changes	based
on	Puppet’s	Resource	Abstraction	Layer	(RAL).	For	example,	if	you	wanted	to	ensure	the
httpd	service	was	stopped	on	a	given	host,	you	could	do	the	following:

$	mco	puppet	resource	service	httpd	ensure=stopped	--with-identity	geode

	*	[==>]	1	/	1

geode

			Changed:	true

				Result:	ensure	changed	'running'	to	'stopped'

Summary	of	Changed:

			Changed	=	1

Finished	processing	1	/	1	hosts	in	630.99	ms

You	can	obviously	limit	this	in	all	the	ways	specified	in	“Filters”.	For	example,	you
probably	only	want	to	do	this	on	hosts	where	Apache	is	not	being	managed	by	Puppet:

$	mco	puppet	resource	service	httpd	ensure=stopped	--wc	!apache

You	could	also	fix	the	root	alias	on	hosts:
$	mco	puppet	resource	mailalias	root	recipient=me@example.net

This	Way	Lies	Danger
This	section	documents	some	extremely	powerful	controls.	Enabling	the	Puppet	RAL
allows	direct,	instantaneous,	and	arbitrary	access	to	any	resource	type	Puppet	knows	how
to	affect.	Read	carefully	through	the	next	section	for	how	to	protect	yourself.

Restricting	Which	Resources	Can	Be	Controlled
By	default,	no	resources	can	be	controlled	from	MCollective.	The	feature	is	enabled	in	the
MCollective	agent,	but	it	has	an	empty	whitelist.	Consider	this	feature	a	really	powerful
shotgun.	The	whitelist	protects	you	and	everyone	who	depends	upon	that	foot	you	are
aiming	at.	Be	careful.

These	are	the	default	configuration	options:
plugin.puppet.resource_allow_managed_resources	=	true

plugin.puppet.resource_type_whitelist	=	none

If	you	want	to	allow	resource	control,	you	would	need	to	edit	the	mcollective/server.cfg
file	with	either	a	whitelist	(Example	8-1)	or	a	blacklist	(Example	8-2)	of	resources	that	can
be	controlled.

Example	8-1.	Whitelist	allows	only	specified	resources
plugin.puppet.resource_type_whitelist	=	package,service

Example	8-2.	Blacklist	allows	everything	except	specified	resources
plugin.puppet.resource_type_blacklist	=	exec

MCollective	does	not	allow	you	to	mix	white	and	black	lists.

Block	MCollective	from	Puppet	Resources
By	default,	no	resource	defined	in	the	Puppet	catalog	can	be	controlled	from	MCollective,
so	as	to	prevent	mcollective	from	making	a	change	against	the	Puppet	policy.	Sending
alternative	options	for	a	resource	in	the	Puppet	catalog	is	most	likely	to	simply	be
overwritten	the	next	time	Puppet	runs	without	the	same	options.	In	a	worst	case,	well…
sorry	about	the	foot.

To	allow	MCollective	to	alter	resources	under	Puppet’s	control,	enable	the	following
setting:

plugin.puppet.resource_allow_managed_resources	=	true

4	This	is	being	tracked	in	Feature	Request	MCO-134.

https://tickets.puppetlabs.com/browse/MCO-134

Chapter	9.	Waking	the	Chef
In	Chapter	7,	we	showed	how	to	use	Chef	to	install	and	configure	MCollective.	In	this
chapter,	we’re	going	to	show	how	MCollective	can:

Use	the	Chef	recipes	and	roles	applied	to	the	node	in	filters
Use	Ohai	data	as	facts	for	MCollective	filters
Query,	start,	stop,	and	restart	the	Chef	client
Wake	the	Chef	client	to	evaluate	the	node	immediately

To	control	the	Chef	daemon,	you’ll	need	to	upload	the	chef-client	cookbook	and	its
dependencies.	I	did	it	like	this:

~$	cd	chef_repo/cookbooks

cookbooks$	knife	cookbook	site	download	chef-client

Downloading	chef-client	from	the	cookbooks	site	at	version	3.6.0

		to	/home/jorhett/chef-repo/cookbooks/chef-client-3.6.0.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/chef-client-3.6.0.tar.gz

cookbooks$	knife	cookbook	site	download	cron

Downloading	cron	from	the	cookbooks	site	at	version	1.4.0

		to	/home/jorhett/chef-repo/cookbooks/cron-1.4.0.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/cron-1.4.0.tar.gz

cookbooks$	knife	cookbook	site	download	logrotate

Downloading	logrotate	from	the	cookbooks	site	at	version	1.6.0

		to	/home/jorhett/chef-repo/cookbooks/logrotate-1.6.0.tar.gz

Cookbook	saved:	/home/jorhett/chef-repo/cookbooks/logrotate-1.6.0.tar.gz

cookbooks$	tar	xzf	chef-client-3.6.0.tar.gz

cookbooks$	tar	xzf	cron-1.4.0.tar.gz

cookbooks$	tar	xzf	logrotate-1.6.0.tar.gz

cookbooks$	knife	cookbook	upload	chef-client	cron	logrotate

Uploading	chef-client				[3.6.0]

Uploading	cron											[1.4.0]

Uploading	logrotate						[1.6.0]

Uploaded	3	cookbooks.

Then	you	need	to	add	the	chef-client	recipe	to	the	node’s	run_list:
~$	knife	node	edit	sunstone.example.net

{

		"run_list":	[

				"recipe[chef-client]",

				"recipe[mcollective::client]",

				"recipe[mcollective::server]"

]

}

Install	the	Chef	Agent
The	MCollective	agent	for	Chef	and	a	Chef	handler	to	provide	Chef	information	to
MCollective	are	both	installed	by	default.	You	can	disable	the	MCollective	agent	or	Chef
handler	by	setting	either	of	the	following	attributes	to	false:

Chef	attributes Value

node['mcollective'][install_chef_handler?] true	(default)	or	false

node['mcollective'][install_chef_agent?] true	(default)	or	false

The	MCollective	agent	for	Chef	must	be	installed	on	both	client	and	server	nodes	in	order
for	requests	to	“Wake	the	Chef”	to	work.

Checking	Chef	Status
Once	you	have	installed	the	MCollective	Chef	agent	and	restarted	mcollectived	(which
the	Chef	cookbook	does	automatically),	you	will	be	able	to	query	and	“Wake	the	Chef”
client.	The	first	thing	you	should	do	is	confirm	which	systems	have	Chef	installed:

$	mco	filemgr	--file	/etc/chef/client.rb	status

geode

heliotrope

sunstone

Now	we	should	confirm	that	all	Chef	nodes	respond	to	requests	for	the	MCollective	Chef
agent:

$	mco	find	--with-agent	chef

geode

heliotrope

sunstone

Now	we	shall	use	the	client	application	to	send	requests	to	the	Chef	agent:
$	mco	chef	status

Discovering	hosts	using	the	mc	method	for	2	second(s)	3

	*	[==>]	3	/	3

Summary	of	Status:

								OK	=	2

			Stopped	=	1

			Missing	=	0

Finished	processing	3	/	3	hosts	in	45.15	ms

Invoking	Ad	Hoc	Chef	Client	Runs
The	following	two	commands	will	do	exactly	as	you	expect:

$	mco	chef	stop	-I	hostname

$	mco	chef	start	-I	hostname

Tip

Chef	client	does	not	have	the	concept	of	enable	or	disable	provided	by	the	Puppet	agent.

In	Chef	parlance,	you	don’t	tell	the	agent	to	runonce	but	instead	to	wake:
$	mco	chef	wake	-I	hostname

This	command	will	wake	the	Chef	client	to	initiate	a	run	immediately.	The	output	of	this
request	includes	only	the	nodes	on	which	the	Chef	client	failed	to	respond.

Part	II.	Complex	Installations
Now	that	you	have	a	working	MCollective	environment,	we’re	going	to	slow	the	pace
down	a	bit	and	go	on	a	nuts-and-bolts	tour	inside	MCollective’s	ecosystem.

We’ll	review	the	architecture,	backbone,	transport,	and	security	components	involved	in
making	MCollective	transactions	seamless.	You’ll	go	through	each	tunable	parameter,
why	we	recommend	the	values	we	do,	and	what	you	can	achieve	by	changing	it.

You’ll	learn	how	to	create	a	network	of	brokers	for	multisite	or	redundancy	requirements.
You’ll	learn	how	to	create	and	use	collectives	to	handle	thousands	of	MCollective	agents
spread	around	the	world.

You’ll	learn	to	enable	cryptography-based	security	plugins	for	MCollective	that	utilize
various	cryptographic	methods	to	authenticate	clients,	from	distributed	salts	and	hashes	to
centrally	signed	and	validated	public/private	key	infrastructure.	You’ll	write	per-client	and
per-command	granular	authorization	rules,	and	you’ll	use	detailed	audit	logs	to	confirm
the	results.

After	finishing	this	section,	you’ll	be	able	to	fine-tune	MCollective	for	any	environment:
small	but	globally	diverse,	immense	in	scale	but	localized,	from	tightly	secured	and
audited	to	permissive	and	enabling.	MCollective	can	support	all	of	these	modes,	and
you’ll	know	how	to	utilize	all	of	them.

Chapter	10.	Middleware	Configuration
In	this	chapter,	we	will	go	deeper	into	the	configuration	of	the	middleware	and	explain
each	option	and	parameter	in	more	detail.	If	you	are	just	learning	MCollective,	it	is	not
essential	that	you	understand	everything	in	this	chapter.	If	MCollective	is	working
properly	in	your	environment	and	meets	your	needs,	you	can	set	this	chapter	aside	and
read	it	later.

Here	are	some	reasons	to	carefully	read	this	chapter:

You	are	having	difficulty	with	connectivity	to	your	middleware	broker.
You	are	tuning	ActiveMQ	to	handle	more	hosts.
You	wish	to	implement	a	network	of	brokers	at	remote	sites.
You	are	looking	for	master/slave	redundancy.

For	any	change	to	the	middleware,	most	especially	for	changes	intended	to	handle	growth
issues,	it	will	be	essential	for	you	to	understand	the	middleware	configuration	in	detail.
That	is	what	this	chapter	will	provide	for	you.

Messaging	Brokers
MCollective	uses	publish/subscribe	middleware	to	provide	a	messaging	service	between
clients,	servers,	and	listeners.	By	design,	MCollective	uses	connector	plugins	to
communicate	with	the	middleware	broker,	thus	allowing	flexibility	in	the	choice	of
middleware	and	the	type	of	communication.	As	of	this	writing,	the	core	installation
contains	the	following	middleware	plugins	(note,	however,	that	it	is	possible	to	create	your
own	middleware	connector	based	on	a	different	technology):		

ActiveMQ	5.8	or	higher	(preferred)
RabbitMQ	2.8	or	higher

Each	of	these	middleware	technologies	is	widely	used	and	actively	supported	by
developer	communities.	Each	of	these	is	suitable	for	small	deployments,	large	clusters,
and	wide-scale	hierarchical	deployments.	They	are	both	used	in	thousands	of
environments	every	day.

Apache	Apollo	is	a	next-generation	messaging	server	intended	to	replace	ActiveMQ.	It
works	with	MCollective	using	the	ActiveMQ	connector.	It	does	not	yet	support	clustering
at	the	time	this	book	was	written.	

By	leveraging	popular	and	actively	maintained	open	source	message	brokers,	MCollective
is	freed	from	having	to	create	and	support	a	proprietary	communications	infrastructure.

Let’s	review	in	depth	the	middleware	configuration	file	activemq.xml	from	“Configuring
ActiveMQ”.

http://activemq.apache.org/
http://www.rabbitmq.com/

Network	Security
These	are	some	of	the	security	considerations	you	should	take	into	account	when
configuring	your	middleware	broker.	

Transport	Connectors
You	should	disable	any	transport	connector	that	you	are	not	using.	For	example,	if	you
have	enabled	TLS	encryption	for	ActiveMQ	middleware,	you	should	comment	out	the
unencrypted	connector:

<transportConnectors>

		<!--	#	disable	the	unencrypted	connector	as	we	are	using	TLS

		<transportConnector	name="stomp+nio"	uri="stomp+nio://0.0.0.0:61613"/>

		-->

		<!--	this	would	be	IPv4	only

		<transportConnector	name="stomp+ssl"	uri="stomp+ssl://0.0.0.0:61614"/>

		-->

		<!--	this	accepts	IPv4	and	IPv6	both	-->

		<transportConnector	name="stomp+ssl"	uri="stomp+ssl://[::0]:61614"/>

</transportConnectors>

If	you	have	multiple	IP	addresses	on	the	host,	you	may	replace	0.0.0.0	or	::0	with	the
specific	IP	you’d	like	ActiveMQ	to	answer	on.	Remember	that	every	server	and	client
must	be	able	to	reach	this	address.	Repeat	if	necessary	for	each	IP	separately:

<transportConnector	name="stomp+nio"	uri="stomp+nio://192.168.2.5:61613"/>

<transportConnector	name="stomp+nio"	

	uri="stomp+nio://[2001:DB8:6A:C0::200:5]:61613"/>

Firewall	Configurations
MCollective	depends	on	the	ability	of	both	servers	and	clients	to	initiate	inbound	sessions
to	the	appropriate	TCP	port	on	the	middleware	broker.	The	following	table	lists	which
ports	are	used	for	which	middleware	brokers	and/or	their	administrative	interfaces:	

Middleware Usage TCP	Port Action

ActiveMQ RMI	Port 1098 Limit	to	management	hosts

ActiveMQ JMX	Console 1099 Limit	to	management	hosts

ActiveMQ Web	Console	and	Jolokia 8161 Limit	to	management	hosts

ActiveMQ STOMP	unencrypted 61613 Allow

ActiveMQ STOMP+SSL 61614 Allow

ActiveMQ OpenWire	unencrypted 61616 Limit	to	brokers

ActiveMQ OpenWire+SSL 61617 Limit	to	brokers

RabbitMQ STOMP	unencrypted 61613 Allow

RabbitMQ STOMP+SSL 61614 Allow

Most	Linux	systems	use	iptables	firewalls.	On	a	Linux	system,	you	could	use	the
following	steps	to	add	a	rule	before	the	global	deny.	If	all	of	your	servers	will	fit	within	a
few	subnets,	it	is	advisable	to	limit	this	rule	to	only	allow	those	subnets	to	connect:

$	sudo	iptables	--list	--line-numbers

Chain	INPUT	(policy	ACCEPT)

num		target					prot	opt				source					destination

1				ACCEPT					all	—				anywhere			anywhere							state	RELATED,ESTABLISHED

2				ACCEPT					icmp—				anywhere			anywhere

...	Look	through	the	output	and	find	an	appropriate	line	number	for	this	rule

$	sudo	ip6tables	--list	--line-numbers

Chain	INPUT	(policy	ACCEPT)

num		target					prot	opt				source					destination

1				ACCEPT					all									anywhere			anywhere							state	RELATED,ESTABLISHED

2				ACCEPT					ipv6-icmp			anywhere			anywhere

...etc

Look	through	the	output	and	find	an	appropriate	line	number	for	the	new	rule.	Then	use
the	following	syntax	to	insert	the	rule	into	this	location	in	the	list:

$	sudo	iptables	-I	INPUT	20	-m	state	--state	NEW	-p	tcp	\\

				--source	192.168.200.0/24	--dport	61613	-j	ACCEPT

$	sudo	ip6tables	-I	INPUT	20	-m	state	--state	NEW	-p	tcp	\\

				--source	2001:DB8:6A:C0::/24	--dport	61613	-j	ACCEPT

Don’t	forget	to	save	that	rule	to	your	initial	rules	file.	For	RedHat-derived	systems,	this
can	be	as	easy	as	the	following:

$	sudo	service	iptables	save

iptables:	Saving	firewall	rules	to	/etc/sysconfig/iptables:[OK]

$	sudo	service	ip6tables	save

ip6tables:	Saving	firewall	rules	to	/etc/sysconfig/ip6table:[OK]

Check	Appendix	A	for	platform-specific	instructions	for	other	operating	systems.

IPv6	Dual-Stack	Environments
If	you	have	both	IPv4	and	IPv6	deployed	on	your	network,	you	may	find	that	some	hosts
are	using	IPv4	and	others	are	using	IPv6.	You’ll	also	notice	that	all	of	these	hosts	can
communicate	with	each	other	just	fine.	As	long	as	the	host	can	connect	to	the	middleware
broker,	it	really	doesn’t	matter	which	protocol	they	used	to	get	there.

However,	there	are	situations	where	you	may	need	to	control	which	protocol	is	used	—	for
example,	if	you	want	to	ensure	IPv6	is	used	in	all	places.	Or	perhaps	you	have	a	remote
site	where	the	provider	doesn’t	provide	IPv6	transit	yet.	How	does	one	control	which
protocol	is	used?

The	answer	is	that	this	choice	is	determined	by	your	operating	system.	If	a	remote	host	has
both	IPv4	and	IPv6	addresses,	then	the	operating	system	will	decide	which	one	to	attempt
to	connect	to	first.	If	the	first	protocol	fails,	MCollective	will	attempt	a	fallback	query	on
the	other	address.

At	the	time	I	tested,	every	OS	I	checked	will	go	first	to	the	IPv6	address	and	then	fall	back
to	the	IPv4	address	if	the	first	attempt	fails.	As	MCollective	server	connections	are	very
long	lived,	a	short	delay	for	initial	connection	will	not	matter.

There	are	no	parameters	in	MCollective	to	define	the	protocol	used	for	the	connection.

Is	there	nothing	you	can	define	in	the	configuration	to	influence	the	protocol	used	for	the
middleware	connection?	Nope,	not	by	the	connection	parameters.	The	only	way	to	control
the	protocol	used	is	to	use	an	IP	address	appropriate	for	that	protocol.

If	a	remote	host	has	both	IPv4	and	IPv6	addresses,	then	the	operating	system	will	decide
which	one	to	attempt	to	connect	to	first.

To	ensure	that	a	client	uses	a	certain	protocol	to	connect	to	your	middleware	broker,	set
the	broker’s	name	in	the	configuration	file	to	a	name	that	resolves	to	one	type	of	address.
For	example:

$	host	activemq.example.net

activemq.example.net	has	address	192.168.200.5

activemq.example.net	has	IPv6	address	2001:DB8:6A:C0::200:5

$	host	activemq-v6.example.net

activemq-v6.example.net	has	IPv6	address	2001:DB8:6A:C0::200:5

$	host	activemq-v4.example.net

activemq-v4.example.net	has	address	192.168.200.5

For	hosts	that	I	want	to	connect	only	over	IPv6,	I	could	use	this	Hiera	config:
mcollective::hosts:

		-	'activemq-v6.example.net'

Or	here	is	an	IPv4-only	connection:
mcollective::hosts:

		-	'activemq-v4.example.net'

And	believe	it	or	not,	the	following	will	cause	the	server	to	connect	over	both	protocols:
mcollective::hosts:

		-	'activemq-v6.example.net'

		-	'activemq-v4.example.net'

ActiveMQ	Config	Structure
The	ActiveMQ	configuration	file	is	quite	long,	and	it	can	be	easy	to	lose	your	place	within
the	file.	So	before	we	start,	let’s	review	the	structure	of	the	file:

There	is	a	single	broker	element	that	handles	all	MCollective	configuration.
Flow	control	and	garbage	collection	are	defined	by	policyEntry	elements.
Users	are	defined	in	authenticationUser	elements.
Access	rules	are	defined	in	authorizationEntry	elements.
System	resource	limits	are	defined	in	systemUsage	elements.
Network	connectors	for	clients	are	defined	in	transportConnector	elements.
Network	connectors	for	other	brokers	are	defined	in	networkConnector	elements.
The	SSL	keyStore	and	trustStore	are	defined	in	the	sslContext	element.

You	can	find	example	activemq.xml	configuration	files	for	ActiveMQ	5.8	and	5.9	at
https://github.com/jorhett/learning-mcollective/tree/master/examples/.	These	examples
match	the	book	contents	and	the	output	created	by	the	ActiveMQ	template	in	the	Puppet
module.

https://github.com/jorhett/learning-mcollective/tree/master/examples/

Detailed	Configuration	Review
The	following	definitions	were	missing	from	the	activemq.xml	configuration	skeleton	in
the	previous	section.	We’ll	go	through	each	one	and	document	which	values	should	be	set,
and	which	values	you	may	want	to	change.

Broker	Definition
The	broker	element	defines	the	ActiveMQ	Java	application	that	all	servers	and	clients
communicate	with.	This	is	the	container	that	encloses	all	other	elements	we	will	be
discussing:

<broker	xmlns="http://activemq.apache.org/schema/core"	useJmx="true"

		brokerName="hostname"

		dataDirectory="leave	this	untouched"

		networkConnectorStartAsync="true"

		schedulePeriodForDestinationPurge="60000"

>

brokerName	can	be	any	name	and	for	a	single	instance	the	value	localhost	is	just	fine.	In	a
network	of	brokers,	each	broker	will	need	to	have	a	unique	name.	We’ll	cover	this	in
“ActiveMQ	Clusters”.

networkConnectorStartAsync	tells	ActiveMQ	to	bring	up	all	network	connectors	in
parallel.	This	parameter	only	matters	if	you	have	a	network	of	brokers,	but	it’s	a	good
default	to	have.

schedulePeriodForDestinationPurge	of	60,000	milliseconds	tells	ActiveMQ	to	scan	for
stale	queues	every	minute.	This	works	on	queues	that	have	the	policyEntry
gcInactiveDestinations	enabled.	These	queues	will	be	garbage	collected	when	idle	and
empty.	Documentation	of	this	feature	can	be	found	at	http://activemq.apache.org/delete-
inactive-destinations.html.

http://activemq.apache.org/delete-inactive-destinations.html

Topic	and	Queue	Tuning
MCollective	works	best	if	producer	flow	control	is	disabled.	Producer	flow	control	slows
down	producers	when	the	memory	or	disk	capacity	has	been	exceeded.	This	usually	only
occurs	when	you	have	many	applications	delivering	large	volumes	of	data	to	a	slow
processor	that	works	through	a	queue	on	its	own	timeline.	

MCollective	requests	are	small,	fast,	and	transient.	The	timeout	for	most	queries	is	10
seconds.	Neither	agents	nor	clients	generally	submit	large	amounts	of	data,	and	the	client
expects	to	receive	replies	as	quickly	as	possible.	It	is	best	to	allow	MCollective	clients	and
servers	to	submit	without	the	overhead	of	flow	control:

<policyEntries>

		<!--	MCollective	works	best	with	producer	flow	control	disabled.	-->

		<policyEntry	topic=">"

				producerFlowControl="false"

	 memorylimit="1mb"

		>

				<pendingSubscriberPolicy>

						<vmCursor/>

				</pendingSubscriberPolicy>

		</policyEntry>

The	>	character	is	a	wildcard	that	will	match	any	character.	Because	it	is	the	first	character
used,	all	topics	and	all	queues	will	match	these	rules.

The	vmCursor	value	for	pending	subscriber	messages	instructs	MCollective	to	keep	all
topic	contents	in	memory	for	fast	and	efficient	delivery.	This	is	documented	at
http://activemq.apache.org/message-cursors.html.

In	the	following	configuration,	we	garbage	collect	idle	queues	after	five	minutes	of
inactivity	(if	no	new	requests	enter	a	queue	in	five	minutes,	we	clean	up	the	queue	and
recover	the	memory):

		<!--	MCollective	generates	a	reply	queue	for	most	commands.

							Garbage-collect	these	after	five	minutes	to	conserve	memory.	-->

		<policyEntry	queue=">"

				producerFlowControl="false"

	 memorylimit="1mb"

				gcInactiveDestinations="true"

				inactiveTimoutBeforeGC="300000"

		>

				<pendingQueuePolicy>

						<vmQueueCursor/>

				</pendingQueuePolicy>

		</policyEntry>

</policyEntries>

Each	request	creates	a	new	reply	queue	to	collect	responses.	After	the	request	timeout	(the
default	is	10	seconds),	the	client	stops	listening	to	the	reply	queue.	Without	garbage
collection,	the	number	of	reply	queues	would	grow	until	ActiveMQ	ran	out	of	memory.
These	rules	clean	up	the	abandoned	reply	queues.

The	policyEntry	for	queues	has	two	extra	parameters:

gcInactiveDestinations	instructs	the	broker	to	run	garbage	collection	on	queues	that
match	the	policy	(all	queues	with	this	example).
inactiveTimeoutBeforeGC	indicates	that	queues	should	be	removed	when	they	have
been	idle	for	five	minutes.

If	you	have	many	reply	queues	and	they	are	collected	quickly,	you	could	try	adjusting

http://activemq.apache.org/producer-flow-control.html
http://activemq.apache.org/message-cursors.html

inactiveTimeoutBeforeGC	back	down	to	its	default	of	one	minute	(60000).

As	with	topics,	the	vmQueueCursor	value	for	pending	queue	messages	instructs
MCollective	to	keep	all	queue	entries	in	memory	for	fast	and	efficient	delivery.	This	is
documented	at	http://activemq.apache.org/message-cursors.html.

http://activemq.apache.org/message-cursors.html

Authentication	and	Authorization
The	critical	parts	for	middleware	authentication	are	the	nodes	queue	and	the	agent	topics.
These	deliver	messages	to	the	servers	that	should	act	on	the	requests.		

To	consider	the	marionette	metaphor,	these	are	your	strings.	Messages	to	a	node’s	queue
will	be	delivered	to	exactly	one	node.	Messages	published	to	an	agent	topic	will	be
received	and	processed	by	every	mcollectived	daemon	that	has	the	named	agent
installed.

Users	and	groups
This	section	defines	the	users	and	assigns	them	to	groups:

<users>

		<authenticationUser	username="broker"

				password="Broker	Password"

				groups="brokers,everyone"

		/>

		<authenticationUser	username="client"

				password="Client	Password"

				groups="servers,clients,everyone"

		/>

		<authenticationUser	username="server"

					password="Server	Password"

					groups="servers,everyone"

		/>

</users>

All	of	the	authorization	rules	defined	in	the	authorizationPlugin	section	use	groups,	not
usernames.	You	can	create	additional	usernames	and	passwords	if	you	like,	but	remember
that	these	don’t	control	which	commands	can	be	run	on	a	server	—	this	only	controls	who
can	send	requests	to	each	topic	or	queue.	In	general,	it	is	best	to	leave	the	middleware
authentication	to	these	three	groups	and	implement	fine-grained	control	using	the
authorization	rules	documented	in	“Authorization”.

Tip

You	might	have	noticed	that	our	initial	configuration	had	only	two	users.	We	have
included	a	broker	user	we	will	introduce	later	in	“ActiveMQ	Clusters”.

Topics	and	queues	the	clients	send	to
The	first	thing	you’ll	notice	is	that	we	define	a	brokers	group	and	give	it	the	ability	to
write	to	every	queue	and	topic	(this	is	used	only	by	brokers	to	relay	data	in	a	cluster
configuration;	we’ll	cover	this	in	“ActiveMQ	Clusters”):

<authorizationEntry	queue=">"	write="brokers"	read="brokers"	admin="brokers"	/>

<authorizationEntry	topic=">"	write="brokers"	read="brokers"	admin="brokers"	/>

Next,	we	give	global	read	and	write	on	the	MCollective	topics	and	queues	to	clients.	The	>
character	in	this	case	is	equivalent	to	a	trailing	wildcard,	allowing	access	to	all	topics	or
queues	underneath	MCollective:

<authorizationEntry	topic="mcollective.>"

		write="clients"	read="clients"	admin="clients"

/>

<authorizationEntry	queue="mcollective.>"

		write="clients"	read="clients"	admin="clients"

/>

The	admin	permission	allows	the	client	to	create	the	topic	or	queue	if	it	doesn’t	exist

already.

Note

In	this	example,	our	collective	is	named	mcollective,	which	is	the	default.	In
Chapter	12,	we	will	discuss	using	multiple	collectives.	At	that	time,	you’ll	need	to
duplicate	the	last	two	lines	with	each	collective’s	name.

Topics	and	queues	the	servers	read	from
Here	we	allow	the	server	nodes	to	read	from	or	create	the	MCollective	agent	topics:

<authorizationEntry	topic="mcollective.*.agent"	read="servers"	admin="servers"	/>

The	agent	topics	are	where	the	clients	place	requests	intended	for	multiple	nodes	that	have
a	given	agent.	For	example,	a	mco	puppet	runonce	command	would	be	sent	out	on	the
mcollective.puppet.agent	topic:

<authorizationEntry	queue="mcollective.nodes"	read="servers"	admin="servers"	/>

Here	we	allow	the	server	nodes	to	read	from	or	create	the	MCollective	node	queue.	This	is
where	the	clients	place	commands	intended	for	a	single	MCollective	server.

The	topics	and	queues	don’t	use	an	explicit	write	permission	because	the	wildcard	client
rules	above	them	allow	clients	to	write	to	any	of	these	queues.	The	servers	should	not
write	to	these	queues.

Topics	and	queues	the	servers	write	to
Next,	we	allow	the	server	nodes	to	create	or	submit	data	to	one	of	the	agent	topics	—	the
registration	agent	(this	information	is	submitted	during	the	server	connection	and
periodically	thereafter;	we’ll	discuss	registration	in	more	depth	in	Chapter	21):	

<authorizationEntry	topic="mcollective.registration.agent"

		write="servers"	read="servers"	admin="servers"

/>

Then	we	authorize	servers	to	submit	their	replies	to	the	queues	created	to	collect	them:
<authorizationEntry	queue="mcollective.reply.>"

		write="servers"	admin="clients"

/>

For	example,	if	you	send	a	command	to	the	filemgr	agent	and	the	unique	number	170075
was	assigned	to	the	request,	a	reply	queue	named	filemgr_170075	would	be	created.	Each
server	that	matches	the	filter	(servers	3–4	in	Figure	10-1)	would	send	a	response	on	the
queue	mcollective.reply.filemgr_170075.	The	client	would	read	each	reply	from	the
queue,	as	Figure	10-1	shows.

Figure	10-1.	Publish	to	a	topic,	receive	responses	on	a	unique	queue

Tip

The	writeable	queues	used	by	the	servers	to	communicate	information	can	be	read	by	the
clients	or	by	specially	designed	listeners.	We’ll	discuss	how	listeners	collect	feedback
from	the	agents	in	Chapter	22.

Transport	Connectors
A	transportConnector	element	defines	a	mechanism	for	servers	and	clients	to	connect
with	the	middleware	broker	over	an	IP	network.	

All	MCollective	messages	are	formatted	as	Streaming	Text	Oriented	Messaging	Protocol
(STOMP)	packets.	The	following	configuration	creates	a	STOMP	protocol	connector
utilizing	ActiveMQ’s	New	I/O	(NIO)	library:

<transportConnectors>

		<transportConnector	name="stomp+nio"	uri="stomp+nio://[::0]:61613"	/>

</transportConnectors>

The	NIO	interface	has	significantly	better	performance.	The	stomp	connector	without	NIO
is	only	suitable	for	a	small	number	of	connections.

You	could	make	the	IP	address	specific	to	just	one	interface,	and	you	could	change	the
TCP	port	used	if	you	wanted	to.	In	the	following	examples,	we	show	specific	IPv4	and
IPv6	addresses	with	TCP	port	6163:

		<transportConnector	name="stomp+nio"	uri="stomp+nio://192.168.200.5:6163"	/>

		<transportConnector	name="stomp+nio"	

uri="stomp+nio://[2001:DB8:6A:C0::200:5]:6163"	/>

In	“ActiveMQ	Clusters”,	you	will	learn	how	to	use	networkConnector	elements	to	link	to
other	ActiveMQ	brokers.

Chapter	11	will	document	how	to	enable	TLS	encryption	to	protect	the	traffic	between
MCollective	nodes	and	the	middleware	broker.

Management	Interfaces
It	is	not	common	to	require	a	management	console	for	ActiveMQ	when	using	it	only	with
MCollective.	The	needs	of	MCollective	applications	are	usually	small	and	instantaneous,
so	tuning	for	large	data	streams	and	long	queues	simply	isn’t	necessary.		

That	being	said,	I’ve	found	the	tools	covered	in	the	following	sections	to	be	useful	while
debugging	problems	with	ActiveMQ	implementations.

Tip

Most	of	my	experience	with	these	tools	was	actually	gained	while	debugging	other
applications.	The	MCollective	configuration	documented	in	this	book	moves	responses
quickly	to	their	destinations.

Web	Console
Enabling	the	Web	Console	will	provide	you	with	a	web	interface	for	examining
ActiveMQ’s	queues	and	topics.	This	will	give	you	a	basic	overview	of	how	many
messages	are	going	through	each	topic	and	queue,	to	look	for	queues	that	may	be	filling
up,	and	so	on.	

You	access	this	console	by	going	to	your	ActiveMQ	box	on	port	8161.	See	Figure	10-2.

http://activemq.example.net:8161/admin

Figure	10-2.	Web	Console

To	enable	the	Web	Console,	you	simply	need	to	add	or	enable	the	Jetty	inclusion	in	the
ActiveMQ	file:

<!--	Allows	us	to	use	system	properties	as	variables	in	this	configuration	file	-->

<bean	class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

			<property	name="locations">

					<value>file:${activemq.conf}/credentials.properties</value>

			</property>

</bean>

<!--

		Enable	web	consoles,	REST	and	Ajax	APIs	and	demos

		See	${ACTIVEMQ_HOME}/conf/jetty.xml	for	more	details.

-->

<import	resource="jetty.xml"/>

If	you	are	using	the	Puppet	module	documented	in	Chapter	7,	then	you	can	secure	the	Web
Console	by	providing	a	password:

#	declarative	method

node	activemq.example.net	{

		class	{	'mcollective::middleware':

				jetty_password	=>	'openssl	rand	-base64	20',

		}

}

#	Hiera	method

mcollective::middleware::jetty_password:	openssl	rand	-base64	20

Warning

Access	to	the	Web	Console	is	not	encrypted	by	default.	To	use	this	safely	over	the	open
Internet,	edit	the	conf/jetty.xml	file	and	remove	the	comments	around	the
SecureConnector	element	near	the	bottom.

You	can	find	more	information	at	http://activemq.apache.org/web-console.html.

Jolokia	API	and	HawtIO
If	you	are	using	ActiveMQ	5.9	or	later,	then	you	can	get	to	all	of	the	same	ActiveMQ
internals	using	the	Jolokai	REST	API.	Enable	the	REST	API	by	one	of	the	following:	

Uncomment	the	inclusion	of	Jetty	at	the	bottom	of	the	ActiveMQ	configuration	file.
Add	a	jetty_password	to	the	class	or	Hiera	parameters	for	the	Puppet	module,	as
described	previously.

Access	the	API	on	your	ActiveMQ	box	using
http://activemq.example.net:8161/api/jolokia,	or
https://activemq.example.net:8161/api/jolokia	if	you	have	enabled	the	secure	connector.

A	popular	Jolokia	client	right	now	is	the	hawtio	Console.	This	is	a	pure	JavaScript
application	that	you	can	run	inside	your	Chrome	browser,	as	a	local	Java	server	on	your
desktop,	or	within	another	Java	app	engine.

No	matter	which	way	you	want	to	use	it,	the	instructions	to	install	hawtio	are	really	easy
to	follow.

hawtio	provides	a	clean,	modern	user	interface	to	access	the	ActiveMQ	internals	(Figure
10-3).

http://activemq.apache.org/web-console.html
http://hawt.io/
http://hawt.io/getstarted/index.html
http://hawt.io/

Figure	10-3.	The	hawtio	user	interface

JMX	MBean	Console
The	JMX	MBeans	interface	will	provide	you	with	a	method	to	query	both	the	JVM	and
ActiveMQ	statistics	directly	with	a	JMX	client.	To	enable	JMX	MBeans,	you	need	to
enable	useJmx	attribute	on	the	broker	element	and	then	enable	managementContext:

<broker	brokerName="hostname"	useJmx=true	...	>

#	...farther	down…

		<managementContext>

				<managementContext

								createConnector="true"

								connectorHost="localhost"

								connectorPort="1099"

								rmiServerPort="1098"

				/>

		</managementContext>

If	you	are	using	the	Puppet	module	documented	in	Chapter	7,	then	you	can	enable	JMX
with	a	simple	step:

#	declarative	method

node	activemq.example.net	{

		class	{	'mcollective::middleware':

				use_jmx	=>	true,

		}

}

#	Hiera	method

mcollective::middleware::use_jmx	:	true

There	is	a	graphical	JConsole	application	on	every	system	that	has	Java	installed.	Simply
go	to	a	prompt	and	run	jconsole	like	so	(a	window	like	that	shown	in	Figure	10-4	will
pop	up):

$	jconsole	service:jmx:rmi:///jndi/rmi://activemq.example.net:1099/jmxrmi

Figure	10-4.	JConsole	GUI

Warning

The	JMX	console	is	unencrypted	and	unprotected	by	username	and	password	by	default.	It
is	best	to	protect	this	behind	a	firewall.	Ensure	that	both	of	the	port	numbers	listed	are
blocked	from	remote	access.	

To	use	this	safely	over	the	open	Internet,	do	both	of	the	following:

Edit	the	activemq-wrapper.conf	or	wrapper.conf	file	as	appropriate	for	your	platform	to
include:	-Djava.rmi.server.hostname=127.0.0.1.	This	will	limit	the	connector	to
only	working	with	connections	from	localhost.
Use	SSH	Tunneling	to	reach	the	interface	without	allowing	plaintext	connections,	like
so:

$	ssh	activemq	-L	1099:localhost:1099	-L	1098:localhost:1098

$	jconsole	service:jmx:rmi://localhost:1098/jndi/rmi://localhost:1099/jmxrmi

Whether	you	enable	remote	connections	or	not,	enabling	the	JMX	console	will	allow	you
to	use	the	activemq-admin	tool	on	the	ActiveMQ	server.	Leaving	this	enabled	without	a
password	allows	you	to	use	activemq-admin	without	crazy	syntax.	The	following	are
some	useful	examples	of	this	tool.

Examine	the	statistics	for	a	single	topic	or	all	queues:
$	activemq-admin	query	-QTopic=mcollective.puppet.agent

$	activemq-admin	query	-QQueue=*

Look	at	the	messages	in	a	queue:
$	activemq-admin	browse	--amqurl	tcp://localhost:61613	mcollective.reply.*

These	display	useful	statistics	about	the	brokers:
$	activemq-admin	bstat	localhost

$	activemq-admin	bstat

$	activemq-admin	list

This	command	doesn’t	work	for	me	with	ActiveMQ	5.9.1.	Using	--jmxlocal	removes	the
error	but	does	not	display	any	values:

$	activemq-admin	dstat

$	activemq-admin	dstat	--jmxlocal

This	was	just	a	quick	overview	of	the	tool.	All	of	these	commands	have	many	additional
options	documented	at	http://activemq.apache.org/activemq-command-line-tools-
reference.html.

To	enable	username	and	password	security,	refer	to	documentation	of	the	JMX	connector
at	http://activemq.apache.org/jmx.html.

http://activemq.apache.org/activemq-command-line-tools-reference.html
http://activemq.apache.org/jmx.html

Statistics	plugin
The	statistics	plugin	provides	an	API	you	can	query	for	queue	and	topic	statistics.	Enable
this	by	adding	the	following	lines	to	the	ActiveMQ	configuration	file:

<plugins>

			<statisticsBrokerPlugin	/>

...other	things…

</plugins>

This	is	already	enabled	by	default	in	the	default	ActiveMQ	configuration	file,	the	example
provided	in	GitHub,	and	the	templates	provided	by	the	Puppet	module.

To	submit	a	query,	you	will	have	to	use	an	ActiveMQ	publisher	and	listener.	The	publisher
should	send	a	blank	message	to	the	ActiveMQ.Statistics.Broker	and	set	a	replyTo
header	to	indicate	a	queue	that	the	listener	is	attached	to.	To	get	statistics	for	all	topics	and
queues,	send	to	the	destination	ActiveMQ.Statistics.

Complete	details	and	example	Java	programs	to	perform	these	queries	are	available	at
http://activemq.apache.org/statisticsplugin.html.

You	can	learn	more	about	how	to	do	similar	programming	in	Part	III.	You	may	find	a
statistics	query	utility	at	the	GitHub	repository	for	Learning	MCollective.

http://activemq.apache.org/statisticsplugin.html
https://github.com/jorhett/learning-mcollective

Conclusion
In	this	section,	we	have	gone	through	each	tuning	parameter	in	the	baseline	configuration
used	for	our	initial	setup.

We	have	shown	the	structure	of	the	topics	and	queues	used	by	MCollective.

We	have	introduced	the	TransportConnector	element	and	explained	why	Java’s	NIO
connectors	are	necessary.

We	have	introduced	you	to	several	management	interfaces	useful	for	analyzing	ActiveMQ
for	debugging	purposes.

The	following	sections	build	on	this	baseline,	showing	changes	that	could	be	made	to
increase	security	or	improve	reliability	in	larger	environments.

ActiveMQ	Clusters
If	your	collective	grows	near	a	thousand	nodes,	or	if	you	have	multiple	sites,	you	may
want	to:

Set	up	a	network	of	brokers	to	convey	messages	between	sites
Set	up	master/slave	synchronization	to	provide	redundancy	within	a	site
Encrypt	traffic	between	sites

You	can	use	all	of	these	options	together	or	in	combination.	Let’s	go	over	how	to
configure	each	one.

Network	of	Brokers
A	network	of	brokers	configuration	is	useful	when	you	want	to	put	ActiveMQ	servers	in
different	physical	locations	(e.g.,	different	data	centers)	and	have	them	operate	as	a	single
consistent	messaging	space.	Here	is	an	example	of	the	lines	you’d	need	to	add	to	both	of
the	ActiveMQ	systems	to	set	up	the	linkage:		

<plugins>

		<simpleAuthenticationPlugin>

				<users>

						<authenticationUser	username="broker"

								password="Broker	Password"

								groups="brokers,everyone"

						/>

				</users>

		</simpleAuthenticationPlugin>

</plugins>

<transportConnectors>

		<transportConnector	name="openwire"	uri="tcp://0.0.0.0:61616"	/>

</transportConnectors>

<networkConnectors>

		<networkConnector

					name="SFO-PVG"

					duplex="true"

					uri="static:(tcp://activemq.london.example.net:61616)"

					userName="broker"

					password="Broker	Password"

		/>

</networkConnectors>

<transportConnectors>

		<transportConnector	name="openwire"	uri="tcp://0.0.0.0:61616"	/>

</transportConnectors>

Tip

Tuning	options	for	the	networkConnector	can	be	found	at
http://activemq.apache.org/networks-of-brokers.html.

By	putting	the	broker	user	in	the	brokers	group,	it	will	have	the	ability	to	write	to	all
topics	and	queues	on	the	accepting	ActiveMQ	server.	This	is	necessary	for	replication	to
work.

At	each	location,	you	configure	the	client	to	connect	to	the	nearest	middleware	broker.	All
messages	will	be	transmitted	between	the	two	locations,	thus	allowing	a	single	collective
to	work	cleanly	across	sites.	If	you	are	concerned	about	redundancy,	you	can	configure	the
client	to	fall	over	to	the	other	sites	if	the	local	site	is	down:

plugin.activemq.pool.size	=	number	of	sites	with	their	own	broker

plugin.activemq.pool.1.host	=	site	#1	broker	hostname

plugin.activemq.pool.1.setting	=	settings	for	this	site

plugin.activemq.pool.2.host	=	site	#2	broker	hostname

plugin.activemq.pool.2.setting	=	settings	for	this	site

...etc

Warning

The	Puppet	Labs	site	indicates	that	you	will	need	two	connections,	one	for	topics	and
another	for	queues,	at	http://bit.ly/UttA1X.	My	tests	were	unable	to	confirm	this	—	I	used
these	settings	successfully	with	clients	and	servers	on	each	side.

The	Puppet	module	provided	with	this	book	will	configure	a	network	of	brokers	simply	by
adding	more	brokers	to	the	hosts	Hiera	parameter	and	providing	a	broker	password:

mcollective::broker_password:	'openssl	rand	-base64	32'

http://activemq.apache.org/networks-of-brokers.html
http://bit.ly/UttA1X

mcollective::hosts:

	-	site	#1	broker	hostname

	-	site	#2	broker	hostname

	-	site	#3	broker	hostname

All	of	the	other	parameters	used	for	connecting	to	the	brokers	are	assumed	to	be	identical.

You	may	want	to	limit	clients	or	servers	to	use	only	a	local	node.	Each	of	the	modules	can
be	overridden	at	its	own	layer,	so	you	can	play	with	Hiera	hierarchy	to	your	heart’s
content.	There	are	two	good	ways	to	do	this.	The	easiest	is	only	to	inform	the	brokers	of
all	nodes:

mcollective::hosts:

	-	site	local	broker	hostname

mcollective::middleware::hosts:

	-	site	#1	broker	hostname

	-	site	#2	broker	hostname

	-	site	#3	broker	hostname

Or	you	can	limit	the	servers	to	a	local	node	and	let	the	brokers	and	clients	know	about	all
nodes:

mcollective::server::hosts:

	-	site	local	broker	hostname

mcollective::hosts:

	-	site	#1	broker	hostname

	-	site	#2	broker	hostname

	-	site	#3	broker	hostname

Warning

In	large	environments	(about	2,000–3,000	nodes,	depending	on	latency	between	your
brokers),	discovery	might	take	longer	than	the	default	two	seconds.	In	a	production
environment	with	5,500	nodes,	we	found	that	10	seconds	was	necessary	for	discovery	to
consistently	receive	responses	from	all	nodes.	You	will	need	to	modify	client	apps	to
extend	the	discovery	timeout	(discussed	in	Part	III	later)	or	set	an	environment	variable	to
avoid	having	to	type	this	with	every	CLI	command:5

$	export	MCOLLECTIVE_EXTRA_OPTS="--discovery-timeout	10	\

		--timeout	5"

Master/Slave	Redundancy
If	you	are	looking	for	fast	failover	response	at	a	single	location,	you	may	instead	want	to
use	a	master/slave	cluster	setup.	For	that	kind	of	setup,	you	want	this	identical
configuration	on	both	brokers:

<plugins>

		<simpleAuthenticationPlugin>

				<users>

						<authenticationUser

								username="broker"

								password="Broker	Password"

								groups="brokers,everyone"

						/>

				</users>

		</simpleAuthenticationPlugin>

</plugins>

<transportConnectors>

		<transportConnector	name="openwire"	uri="tcp://0.0.0.0:61616"	/>

</transportConnectors>

<networkConnectors>

		<networkConnector

				uri="masterslave:(tcp://amq1.example.net:61616,tcp://amq2.example.net:61616)"

				userName="broker"

				password="Broker	Password"

		/>

</networkConnectors>

Pay	special	attention	to	the	networkConnector	uri	here.	The	first	host	listed	should	be
the	master,	and	then	every	hostname	listed	after	it	would	be	slaves.	Every	ActiveMQ
broker	should	have	the	list	in	the	same	order.

Note

Tuning	options	for	the	networkConnector	can	be	found	at
http://activemq.apache.org/networks-of-brokers.html.

To	enable	the	servers	and	clients	to	fail	over	to	the	slave,	you	will	need	to	make	the
following	changes	to	both	the	server	and	client	configuration	files:

plugin.activemq.pool.size			=	count	of	all	ActiveMQ	brokers

plugin.activemq.pool.1.host	=	master	broker	name

all	the	settings	for	the	master	broker

plugin.activemq.pool.2.host	=	slave	broker	#2

all	the	same	settings	slave	broker	2

plugin.activemq.pool.3.host	=	slave	broker	#3

all	the	same	settings	slave	broker	3…repeat	until	done

The	Puppet	module	provided	with	this	book	supports	a	master/slave	setup	with	the
following	Hiera	parameter:

mcollective::hosts:

	-	master	broker	hostname

	-	slave	broker	#2	hostname

	-	slave	broker	#3	hostname

All	of	the	other	parameters	used	for	connecting	to	the	brokers	are	assumed	to	be	identical.

http://activemq.apache.org/networks-of-brokers.html

Encrypted	Broker	Links
You	should	use	SSL/TLS	encryption	for	the	links	between	sites.	You	should	absolutely	do
this	if	you	are	connecting	across	the	public	Internet.	To	do	this,	you’ll	need	to	create	both
the	keyStore	described	in	“Anonymous	TLS”	and	the	trustStore	from	“CA-Verified
TLS	Servers”.	

Then	you	would	adjust	the	ActiveMQ	configuration	between	the	sites	to	use	the
appropriate	protocol:

<transportConnectors>

		<transportConnector

				name="openwire+ssl"

				uri="ssl://0.0.0.0:61617?needClientAuth=true"

		/>

</transportConnectors>

<networkConnectors>

		<networkConnector

				name="SFO-PVG"

				duplex="true"

				uri="static:(ssl://activemq.siteb.example.net:61617)"

				userName="broker"

				password="Broker	Password"

		/>

</networkConnectors>

<sslContext>

		<sslContext

				keyStore="ssl/keystore.jks"

				keyStorePassword="somethingElseYouWillNeverShare"

				trustStore="ssl/truststore.jks"

				trustStorePassword="anotherThingYouWillNeverShare"

		>

</sslContext>

If	you	are	using	the	Puppet	module	provided	with	this	book,	you	would	simply	set	the
following	Hiera	parameters	and	Puppet	will	do	all	the	work	for	you:

mcollective::connector_ssl																		:	true

mcollective::middleware::keystore_password		:	'openssl	rand	-base64	20'

mcollective::middleware::truststore_password:	'openssl	rand	-base64	20'

Conclusion
In	this	section,	we	have	reviewed	two	different	models	for	multibroker	usage:

Using	a	network	of	brokers	to	provide	connectivity	between	diverse	sites
Using	master-slave	redundancy	to	provide	resilience	to	hardware	problems

You	can	blend	both	of	these	options	to	connect	a	master/slave	pair	of	brokers	to	brokers	at
remote	sites.

Large-Scale	Broker	Configurations
There	are	two	very	different	types	of	large-scale	broker	configurations:	

Many	clients	using	a	single	broker
Brokers	at	many	sites	around	the	world

Obviously	you	can	have	both	configurations	in	the	same	organization.	We’ll	try	to	cover
the	individual	needs	of	each.

I	often	see	requests	for	“a	high-performance	ActiveMQ	configuration.”	There	are	a	few
basic	recommendations	for	any	configuration,	but	the	truth	of	the	matter	is	that	once	an
MCollective	environment	has	grown,	either	by	size	or	by	network	distance,	you’ll	need	to
tune	in	a	way	specific	to	your	network	and	your	needs.
A	Racing	Analogy	for	Tuning

In	my	personal	time,	I	race	motorcycles	on	closed	courses	for	fun.	Let’s	think	about	tuning	using	motorcycle	(or	car)
racing	as	an	analogy.	

A	street	motorcycle/car	works	on	all	streets	without	custom	changes	because	the	needs	are	simple.	You	only	go	about
half	as	fast	as	it	can	go,	and	you	don’t	brake	to	the	limits	every	time	you	stop.	This	is	like	a	basic	middleware	broker:
it	can	easily	handle	a	few	hundred	nodes	without	any	tuning.

Once	you	are	trying	to	run	at	top	speed,	maintain	the	highest	corner	speed,	or	brake	down	from	the	highest	speed
without	losing	control,	your	demands	are	much	higher.	So	you	have	to	tune	your	motorcycle/car	to	perform	at	that
level.

You	can	get	some	basic	tuning	assistance	from	anyone,	but	to	run	with	the	very	best,	you	must	tune	your	motorcycle
to	the	conditions	at	each	track	you	go	to.	Everything	from	riding	style	to	corner	banking	to	air	temperature	will	play
into	the	tuning	equations.	The	most	successful	race	teams	tune	their	race	bike/car	to	the	specific	needs	of	that	specific
track	on	that	specific	day.

Small	sites	(street	drivers)	can	use	MCollective	without	any	special	tuning.	Big	sites	with	big	demands	(racers)	need
to	tune	MCollective	for	the	special	needs	of	their	own	racetrack,	which	will	be	different	than	every	other	racetrack.

This	analogy	only	goes	so	far	—	thankfully,	you	won’t	need	to	retune	MCollective	every	day.	As	your	environment
grows,	you’ll	need	to	tune	MCollective	differently	for	your	specific	network	(track)	and	for	your	specific	usage
(riding	style).	What	works	on	a	different	network	or	to	support	different	applications	won’t	necessarily	work	for	you.

In	this	section,	we’ll	discuss	tuning	ActiveMQ	for	high	numbers	of	clients	or	high	volume
traffic.	There	are	many	tunable	parameters	for	ActiveMQ	that	aren’t	relevant	to
MCollective.	We’re	going	to	ignore	those	features	and	focus	on	changes	that	are	specific
and	useful	for	MCollective.

Understanding	MCollective’s	Needs
The	Puppet	Labs	documentation	has	very	conservative	recommendations	for	middleware
sizing:

Scale	—	we	recommend	a	maximum	of	about	800	MCollective	servers	per	ActiveMQ
broker,	and	multiple	brokers	let	you	expand	past	this.

This	is	a	safe	rule.	The	fact	of	the	matter	is	that	it	depends.	I’ve	been	involved	with	sites
that	have	four	times	that	number	per	broker.	I’ve	also	been	involved	with	sites	that	max
out	brokers	well	below	that	number.	The	answer	for	your	exact	needs	is	something	that
you	may	spend	some	time	figuring	out	and	will	likely	change	over	time.

First,	let’s	go	over	what	does	and	doesn’t	matter	for	making	MCollective	feel	faster	in
your	network:

✗	Bigger	network	pipes	✓	Low-latency	links

In	very	few	environments	will	MCollective	generate	substantial	network	traffic	on	the
broker,	and	frankly	you	know	who	you	are	because	you	wrote	or	are	using	an	agent	that
transfers	large	data.	Most	requests	and	responses	are	trivial	in	size	and	generate	hundreds
of	minimum-size	packets,	rather	than	any	substantially	sized	packets.

MCollective	is	very	sensitive	to	latency	in	the	network	links	between	brokers.	I	have
found	it	best	practice	to	implement	all	networks	of	brokers	as	a	mesh	rather	than	a	star
whenever	possible.	It	allows	traffic	to	get	to	its	destination	with	a	single	hop,	rather	than
traversing	a	central	routing	queue	prior	to	delivery.

✗	Dozens	of	CPU	cores	✓	Gigabytes	of	RAM

ActiveMQ	does	not	appear	to	scale	vertically.	I	have	never	witnessed	a	performance	gain
by	moving	ActiveMQ	to	a	bigger	hardware	box.	In	my	experience,	OpenStack/KVM	or
VMware	ESX	virtual	hosts	provide	identical	performance	to	bare	metal	hosts	with
equivalent	specs.	In	most	circumstances,	the	ActiveMQ	host	can	be	running	at	very	low
CPU	utilization	while	ActiveMQ	queues	are	overloaded.

The	best	way	to	tune	ActiveMQ	for	higher	performance	is	to	make	more	memory
available	for	it.	Many	default	installations	limit	the	Java	application	to	512	MB	and	the
ActiveMQ	broker	to	a	mere	20	MB	of	RAM.	Because	even	small-end	systems	these	days
have	significantly	more	RAM,	I	often	quadruple	or	octuple	(eight	times)	this	limiter.	Java
will	only	use	what	it	needs.	I	have	not	witnessed	any	significant	memory	leakage	in
ActiveMQ	5.8	or	5.9.

✗	Less	collectives	with	more	machines	✓	Localized	collectives	avoid	transit

A	query	sent	to	a	collective	with	5,000	nodes	on	it	will	cause	the	request	to	be	broadcast	to
all	5,000	hosts	during	discovery.	Each	host	must	read	the	filter	and	decide	whether	to
respond.	If	you	split	up	your	collectives	and	send	most	messages	to	a	local	subcollective,
it	will	reduce	cross-site	network	traffic	significantly.	We’ll	show	you	how	to	do	this	in
Chapter	12.

http://bit.ly/UtuwTP

Recommendations	for	Baseline	Tuning
So	what	does	this	all	mean?	Here	are	the	common	changes	that	every	site	should
implement	for	high-performance	middleware:

Set	org.apache.activemq.UseDedicatedTaskRunner	to	false	in	the	wrapper
configuration	file,	or	use	-Dorg.apache.activemq.UseDedicatedTaskRunner	=false
in	the	command-line	arguments.
Tune	Java	Max	Memory	to	use	most	of	the	available	memory	in	the	system.	A
dedicated	broker	isn’t	doing	much	else	with	that	memory,	is	it?	This	is
wrapper.java.maxmemory	in	activemq-wrapper.conf	for	many	platforms,	or	adjust	-
Xmx512m	on	the	command	line.
Ensure	that	producer	flow	control	is	disabled	as	discussed	in	“Detailed	Configuration
Review”.	If	you	are	seeing	queue	messages	being	lost,	adjust
systemUsage/systemUsage/memoryUsage	to	use	70%	of	the	size	of	Java	Max	Memory.
For	any	broker	supporting	a	thousand	clients	or	large	reply	queues,	this	should	be
several	gigabytes.
If	you	have	many	distinct	networks	or	widely	dispersed	sites,	create	subcollectives	for
each	location	or	region,	as	discussed	in	“Localizing	Traffic”.	You	can	still	initiate
requests	to	the	entire	collective	when	necessary,	but	it	shouldn’t	be	your	default.

Supporting	Thousands	of	Servers
To	handle	anything	near	a	thousand	connections	to	an	ActiveMQ	broker,	you’ll	need	to
tune	the	TCP	stack	of	the	node.	I’ve	included	some	recommendations	that	I	and	others
have	found	useful.	You	may	need	to	find	the	correct	tuneables	for	non-Linux	systems:

#	More	file	descriptors	==	more	open	TCP	connections

ulimit	-Hn	8192

ulimit	-Sn	8192

#	Close	and	reuse	finished	TCP	sessions	faster

/sbin/sysctl	-w	net.ipv4.tcp_fin_timeout=15

/sbin/sysctl	-w	net.ipv4.tcp_tw_reuse=1

#	Identify	failed	TCP	links	faster

/sbin/sysctl	-w	net.ipv4.tcp_keepalive_time=300

/sbin/sysctl	-w	net.ipv4.tcp_keepalive_intvl=30

/sbin/sysctl	-w	net.ipv4.tcp_keepalive_probes=5

#	Allow	connection	backlog	of	2000	connections

#	Required	as	STOMP	clients	reconnect	quickly

/sbin/sysctl	-w	net.core.somaxconn=2000

/sbin/sysctl	-w	net.core.netdev_max_backlog=2000

#	Increase	size	of	TCP	read	and	write	buffers

/sbin/sysctl	-w	net.core.rmem_default=256960

/sbin/sysctl	-w	net.core.rmem_max=5242880

/sbin/sysctl	-w	net.core.wmem_default=256960

/sbin/sysctl	-w	net.core.wmem_max=5242880

#	Disable	timestamps

/sbin/sysctl	-w	net.ipv4.tcp_timestamps=0

You	would	make	these	changes	permanent	by	storing	them	in	the	appropriate	files	for	your
platform.	On	Linux,	the	ulimit	changes	should	be	stored	in	/etc/security/limits.conf,	and
the	sysctl	changes	would	be	stored	in	/etc/sysctl.conf.

Another	important	thing	to	change	is	the	discovery	timeout.	In	environments	larger	than
2,000–3,000	nodes	(depending	on	latency	between	your	brokers),	discovery	might	take
longer	than	the	default	two	seconds.	In	a	production	environment	with	5,500	nodes,	we
found	that	10	seconds	was	necessary	for	discovery	to	get	answers	from	all	nodes
consistently.	

You	will	need	to	modify	client	apps	to	extend	the	discovery	timeout	(discussed	in	Part	III
later)	or	set	an	environment	variable	to	avoid	having	to	type	this	with	every	CLI
command:6

$	export	MCOLLECTIVE_EXTRA_OPTS="--discovery-timeout	10	--timeout	5"

As	you	can	see,	we	did	not	need	to	extend	the	timeout	for	requests	to	the	same	length
when	all	nodes	were	local	to	the	client.	Discovery	needed	to	have	twice	the	timeout	as	the
requests	themselves.

Reaching	Globally	Diverse	Servers
The	first	thing	you	should	consider	with	globally	diverse	brokers,	especially	if	the	links
are	high-latency	transcontinental	links,	is	to	localize	as	much	traffic	as	possible	using
distinct	collectives	in	each	region.	If	you	split	up	the	nodes	into	local	collectives	and	send
most	messages	to	the	local	collective,	it	will	reduce	cross-site	network	traffic	significantly.
We’ll	show	you	how	to	do	this	in	Chapter	12.

The	second	improvement	is	to	set	up	your	broker	links	in	a	star	configuration	if	possible,
or	a	modified	star	configuration	if	necessary.	You	want	to	minimize	the	hops	(i.e.,	the
number	of	brokers	that	have	to	process	a	request)	between	the	client	and	server.	This	will
improve	the	latency	of	the	reply	and	avoid	running	into	timeouts.

Timeouts	in	large	networks	are	not	always	avoidable.	Multicontinental	networks	create
unavoidable	high	latency	between	your	brokers.	You	will	need	to	tune	your	requests	to
work	around	this:

One	tunable	is	the	discovery	timeout.	In	a	production	environment	with	seven	global
sites,	we	found	that	five	seconds	was	necessary	for	discovery	to	get	answers	from	all
nodes.	
The	other	tunable	is	the	request	timeout.	In	the	same	environment,	we	found	that	the
minimum	suitable	request	timeout	was	the	same	number.

For	command-line	applications,	you	can	set	environment	variables:7
$	export	MCOLLECTIVE_EXTRA_OPTS="--discovery-timeout	5	--timeout	5"

For	custom	client	applications,	you	can	tune	the	timeouts	within	the	application,	as
documented	in	Part	III.

Upgrading	to	ActiveMQ	5.9.1
At	the	time	this	book	went	to	print,	Puppet	Labs	was	providing	ActiveMQ	5.8	in	its
repository.	While	working	with	several	clients,	I	found	ActiveMQ	5.9	to	work
significantly	better	when	handling	large	numbers	of	SSL/TLS	clients.	

Originally,	ActiveMQ	was	designed	for	a	small	number	of	connected	nodes.	As	usage	of
ActiveMQ	grew,	it	was	clear	that	the	basic	connector	couldn’t	handle	large	numbers	of
clients.	A	new	connector	was	created	based	on	the	Java	Non-blocking	I/O	(NIO)	library.
This	connector	was	available	for	non-SSL	connections	in	ActiveMQ	5.8	but	did	not
handle	SSL	connections	well.

In	my	experience,	the	standard	stomp+ssl	connector	will	start	to	fail	somewhere	just	over
500	active	connections.	More	TCP	connections	will	be	accepted,	but	the	STOMP
negotiation	will	be	unsuccessful.

ActiveMQ	5.9	provides	a	stomp+nio+ssl	connector	that	can	handle	large	numbers	of	SSL
clients.	I	have	created	an	ActiveMQ	5.9.1	RPM	for	RedHat/CentOS	based	on	the
configuration	supplied	by	Puppet	Labs	with	5.8	and	have	made	it	available	at
http://bit.ly/UtwWBU.	I	provided	this	to	Puppet	Labs	in	Improvement	CPR-32,	so	it	might
be	available	in	the	repository	already.	If	not,	you	can	download	it	from	my	website	for
evaluation.

Start	by	making	a	backup	copy	of	activemq.xml,	as	your	configuration	will	revert	to	the
stock	Puppet	Labs	config	after	installing	this	RPM:

$	sudo	cp	/etc/activemq/activemq.xml	/etc/activemq/activemq.xml_5.8

$	wget	-q	http://www.netconsonance.com/downloads/activemq-5.9.1-2.el6.noarch.rpm

$	sudo	service	mcollective	stop

Shutting	down	mcollective:																																	[OK]

$	sudo	service	activemq	stop

Stopping	ActiveMQ	Broker…

Stopped	ActiveMQ	Broker.

$	sudo	yum	install	activemq-5.9.1-2.el6.noarch.rpm

Loaded	plugins:	fastestmirror,	security

Loading	mirror	speeds	from	cached	hostfile

Setting	up	Install	Process

Examining	activemq-5.9.1-2.el6.noarch.rpm:	activemq-5.9.1-2.el6.noarch

Marking	activemq-5.9.1-2.el6.noarch.rpm	to	be	installed

Resolving	Dependencies

-->	Running	transaction	check

--->	Package	activemq.noarch	0:5.9.1-2.el6	will	be	installed

-->	Finished	Dependency	Resolution

Dependencies	Resolved

==

	Package							Arch									Version									Repository																					Size

==

Installing:

	activemq						noarch							5.9.1-2.el6					/activemq-5.9.1-2.el6.noarch			41	M

Transaction	Summary

==

Install							1	Package(s)

Total	size:	41	M

Installed	size:	41	M

Is	this	ok	[y/N]:	y

Downloading	Packages:

Running	rpm_check_debug

Running	Transaction	Test

Transaction	Test	Succeeded

Running	Transaction

http://en.wikipedia.org/wiki/New_I/O
http://bit.ly/UtwWBU
https://tickets.puppetlabs.com/browse/CPR-32

		Updating			:	activemq-5.9.1-2.el6.noarch																							1/2

		Cleanup				:	activemq-5.8.0-3.el6.noarch																							2/2

		Verifying		:	activemq-5.9.1-2.el6.noarch																							1/2

		Verifying		:	activemq-5.8.0-3.el6.noarch																							2/2

Installed:

		activemq.noarch	0:5.9.1-2.el6

Complete!

$	sudo	service	activemq	start

Starting	ActiveMQ	Broker…

$	sudo	service	mcollective	start

Starting	mcollective:																																						[OK]

To	use	this	version	with	the	Puppet	module,	you	need	to	inform	the	module	that	you	want
the	configuration	changes	specific	to	version	5.9.	This	is	accomplished	with	the	following
Hiera	change:

#	hieradata/common.yaml

mcollective::middleware::confversion:	'5.9'

Then	run	the	Puppet	agent	on	your	middleware	systems	like	so:
$	mco	puppet	runonce	--with-class	mcollective::middleware

	*	[===>]	1	/	1

Finished	processing	1	/	1	hosts	in	283.63	ms

If	you	aren’t	using	Puppet	to	manage	the	middleware	configuration,	then	start	by	making	a
backup	copy	of	/etc/activemq/activemq.xml,	as	your	configuration	will	revert	to	the	stock
Puppet	Labs	config.	You’ll	need	to	reapply	by	hand	many	of	the	changes	discussed	in
“Detailed	Configuration	Review”.

Checking	for	Known	Problems
At	the	time	this	book	was	written,	several	problems	exist	that	you	should	be	aware	of.	I
hope	these	issues	are	fixed	and	obsolete	by	the	time	this	book	reaches	your	hands,	so	I’ve
given	you	the	bug	numbers	and	links	to	check	them	out:

The	ActiveMQ	connector	does	not	close	TCP	sessions	when	it	fails	to	complete	an	SSL
connection

An	incorrectly	configured	server	will	create	hundreds	of	open	TCP	sessions	on	the
ActiveMQ	broker	(Bug	MCO-196).	You	can	see	this	with	the	following	command	on
your	broker:8

netstat	-an	|grep	6161	|awk	'{print	$5}'	|cut	-d:	-f1	|sort	|uniq	-c	|sort	-n

ActiveMQ	5.8.0	has	only	a	half-second	tolerance	for	heartbeat	failures

ActiveMQ	5.8	will	drop	a	connection	that	is	more	than	half	a	second	late.	We’ve	found
this	to	be	especially	problematic	with	SSL/TLS	connections.	ActiveMQ	5.9	provides	a
new	transport	option	(transport.hbGracePeriodMultiplier),	which	can	be	used	to
make	the	heartbeat	validation	less	strict.	If	you	are	having	issues	with	this,	consider
upgrading	to	ActiveMQ	5.9.1	(as	documented	earlier)	and	setting	this	value	to	1.5.

No	more	than	500	SSL/TLS	connections	per	broker

Some	time	after	the	500th	client	has	connected	to	an	ActiveMQ	5.8	broker	with
SSL/TLS,	you	will	start	seeing	clients	that	fail	to	negotiate	a	session.	I	have	been	unable
to	determine	the	limitation,	but	it	has	not	been	a	lack	of	CPU	or	memory	on	the
ActiveMQ	broker.	It	simply	ceases	to	finish	the	SSL/TLS	negotiation	after	reaching	that
limit.	The	ActiveMQ	developers	indicate	that	only	the	NIO	transport	connectors	are
designed	to	handle	large	numbers	of	clients.

Update	to	ActiveMQ	5.9.1,	where	you	can	use	STOMP+NIO+SSL	as	your	transport.	If
you	are	using	the	Puppet	module	provided	in	this	book,	it	will	automatically	adjust	your
ActiveMQ	configuration	to	use	this	connector	when	confversion	is	set	to	5.9.	No	client
or	server	configuration	changes	are	necessary.

https://tickets.puppetlabs.com/browse/MCO-196
https://activemq.apache.org/stomp.html
https://activemq.apache.org/configuring-transports.html

Conclusion
Tuning	ActiveMQ	brokers	or	clusters	for	scale	requires	changes	at	multiple	levels.	In	this
chapter,	we	discussed	the	following	changes:

Give	as	much	memory	as	possible	to	the	Java	engine,	then	tune	up	the	size	of	your
broker	to	match.	The	broker	will	only	consume	memory	it	needs.
Tune	the	system	sysctls	to	enlarge	the	number	of	open	files	and	to	increase	the	read	and
write	buffers	used	for	network	connections.
Use	multiple	collectives	to	isolate	traffic	for	large	clusters	or	geographically	diverse
sites.
If	you	are	using	TLS	authentication	with	more	than	a	few	hundred	servers,	upgrade	to
ActiveMQ	5.9.1	to	utilize	the	SSL-enabled	NIO	connector.
Use	a	star	or	modified	star	configuration	to	limit	the	number	of	brokers	a	message	has
to	transit	between	the	server	and	the	client.
Configuration	problems	could	cause	servers	or	clients	to	back	off	and	retry
connections.	Check	the	number	of	open	connections	per	IP	address	on	the	middleware
hosts	to	identify	misconfigured	nodes.
Increase	the	discovery	and	request	timeouts	as	necessary	for	all	servers	to	transmit	their
responses	back	to	the	client.

Growing	your	network	of	brokers	will	require	careful	tuning	to	achieve	the	best
performance.	None	of	the	tuning	done	here	is	limited	to	MCollective.	Most	documentation
for	tuning	ActiveMQ	connectors	will	be	relevant	to	the	performance	of	your	network	of
brokers.
5	Puppet	Labs	Improvement	Request	MCO-193	requests	a	configuration	file	option	for
this.	It	may	be	available	by	the	time	this	book	is	printed.
6	Puppet	Labs	Improvement	Request	MCO-193	requests	a	configuration	file	option	for
this.	It	may	be	available	by	the	time	this	book	is	printed.
7	Puppet	Labs	Improvement	Request	MCO-193	requests	a	configuration	file	option	for
this.
8	This	shows	as	resolved	on	the	Puppet	Labs	ticketing	system,	but	I	haven’t	had	a	chance
to	test	this	yet	with	a	sufficiently	large	site.	Please	contact	me	if	you	can	confirm	whether
this	is	solved	or	not.

https://tickets.puppetlabs.com/browse/MCO-193
https://tickets.puppetlabs.com/browse/MCO-193
https://tickets.puppetlabs.com/browse/MCO-193

Chapter	11.	Middleware	Security
In	this	chapter,	we	will	discuss	two	different	ways	to	enhance	security	of	your	middleware
connection.	Both	of	these	options	use	Transport	Layer	Security	(TLS),	which	is	an
enhanced	version	of	Secure	Sockets	Layer	(SSL).

Note

Middleware	security	options	control	the	ability	to	connect	to	the	broker.	Which	queues
and	topics	a	node	can	read	and	write	from	is	controlled	by	the	authorizationEntry
configuration	documented	in	“Authentication	and	Authorization”.

MCollective	has	its	own	authorization	system	that	controls	whether	or	not	a	given
MCollective	request	is	allowed	on	a	server,	described	in	“Authorization”.

This	layer	of	security	only	controls	whether	or	not	a	node	can	connect	to	the	broker	and
whether	or	not	the	communication	is	encrypted.

TLS	protects	traffic	by	encrypting	it	with	a	pre-arranged	symmetric	key.	This	key	is	used
to	encrypt	the	traffic	flowing	between	the	two	sides.	Each	side	of	the	TLS	connection	can
(optionally)	validate	the	far	side’s	X.509	certificate.	This	asymmetric	cryptography	can
assure	that	the	far	side	with	whom	they	are	communicating	is	valid	prior	to	sending	any
data.	

Tip

When	you	connect	to	your	bank’s	website,	the	browser	does	a	cryptographic	validation
that	the	website	is	really	your	bank’s	site.	It	does	this	by	ensuring	that	the	bank’s	public
key	was	signed	(in	an	X.509	certificate)	by	an	authority	that	the	browser	recognizes	and
trusts.

The	bank	does	not	usually	require	your	browser	to	provide	a	certificate	back	to	it	proving
who	you	are,	although	this	is	a	valid	TLS	configuration.	It	relies	instead	on	your	username
and	password,	which	is	protected	from	eavesdropping	by	the	TLS	encryption.

If	you	wish	to	implement	TLS	encryption,	it	is	essential	that	you	understand	these
configuration	choices:

Anonymous	TLS	provides	the	easiest	way	to	encrypt	transport	between	the	MCollective
nodes	and	the	middleware.	Similar	to	web	clients	connecting	to	a	secure	website,	the
client	is	not	required	to	have	a	valid	TLS	certificate.	The	secure	session	is	set	up,	and
end-to-end	encryption	protects	the	username	and	password	used	to	connect,	as	well	as
all	MCollective	requests	(Figure	11-1).

Figure	11-1.	TLS	encryption	without	client	TLS	certificates

CA-Verified	TLS	provides	not	only	encrypted	transport,	but	also	cryptographic
authentication	between	the	MCollective	nodes	and	the	middleware.	This	configuration
requires	that	every	MCollective	node	have	a	pre-signed	TLS	certificate	to	access	the
middleware.	This	ensures	the	most	extensive	security	for	the	middleware	(Figure	11-
2).	

Figure	11-2.	TLS	encryption	with	bidirectional	TLS	certificate
verification

There	are	two	parts	of	enabling	CA-Verified	TLS:	trusted	servers	and	trusted	clients,
which	we’ll	cover	in	“CA-Verified	TLS	Servers”	and	“CA-Verified	TLS	Clients”,
respectively.

Let’s	go	through	how	to	configure	these	two	options.

Anonymous	TLS
Anonymous	TLS	is	the	easier-to-configure	option	to	encrypt	traffic	between	MCollective
and	the	middleware.	This	option	uses	TLS	encryption	to	protect	the	connection	from
snooping	of	usernames,	passwords,	and	MCollective	request	data.	The	clients	continue	to
authenticate	to	the	middleware	using	the	usernames	and	passwords	we	configured	in
“Configuring	ActiveMQ”.	

Note

This	is	a	good	security	model	if	you	trust	your	firewall,	DNC,	and	related	infrastructure	to
ensure	that	nodes	always	connect	to	the	expected	broker,	and	no	unauthorized	systems	can
connect	to	your	broker.	You	should	avoid	using	this	security	model	when	using	insecure
DNS	or	Internet	transit.	

Advantages
The	advantages	of	Anonymous	TLS	include	the	following:

Easy	to	set	up.
Encrypts	the	data	stream	to	and	from	the	middleware.
Prevents	sniffing	of	ActiveMQ	logins	and	passwords.

Disadvantages
The	disadvantages	of	Anonymous	TLS	include	the	following:

Vulnerable	to	man-in-the-middle	attacks	when	connections	can	be	intercepted.
If	a	server	password	is	compromised,	an	attacker	could	observe	requests	sent	to
servers,	and	inventory	data	submitted	on	the	mcollectivr.registration.agent	topic.

Puppet	Module	Setup
If	you	are	using	the	Puppet	module	provided	with	this	book,	you	need	only	the	following
Hiera	data	and	all	three	of	the	following	steps	will	be	done	for	you.	No	other	changes	are
required.	Once	every	node	has	accepted	the	changes,	everything	will	be	working	over
SSL:

mcollective::connector_ssl																:	true

mcollective::connector_ssl_type											:	anonymous

mcollective::middleware::keystore_password:	openssl	rand	-base64	32

Or	if	you	use	declarative	Puppet	manifests:
node	something-every-node-inherits	{

		class	{	'mcollective':

				connector_ssl						=>	true,

				connector_ssl_type	=>	'anonymous',

		}

		class	{	'mcollective::middleware':

				keystore_password		=>	'openssl	rand	-base64	20',

		}

}

Manual	Setup
If	you	don’t	have	Puppet	installed,	these	are	the	steps	for	enabling	Anonymous	TLS
manually.

Create	a	TLS	keypair
Create	a	self-signed	keypair	for	your	middleware	broker:

$	mkdir	/etc/activemq/ssl

$	cd	/etc/activemq/ssl

$	openssl	genrsa	-out	broker-name_key.pem	2048

............+++

...+++

e	is	65537	(0x10001)

$	openssl	req	-new	-key	broker-name_key.pem	-out	broker-name_cert.pem	-days	3650

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated

into	your	certificate	request.

...snip	answers	that	don't	matter…

Create	a	Java	keyStore
Next,	we	want	to	set	up	the	SSL	keyStore	used	by	ActiveMQ	for	negotiating	the
encrypted	connection:

$	cd	/etc/activemq/ssl

$	cat	broker-name_key.pem	broker-name_cert.pem	\

					>	broker-name_combined.pem

$	openssl	pkcs12	-export	

		-in	broker-name_combined.pem	-out	broker-name.p12	-name	broker-name

Enter	Export	Password:	secret

Verifying	-	Enter	Export	Password:	secret

$	keytool	-importkeystore	-storetype	JKS	-destkeystore	keystore.jks	\

				-srcstoretype	PKCS12	-srckeystore	$broker-name.p12	-alias	broker-name

Enter	destination	keystore	password:	write	down	this	password

Re-enter	new	password:	use	the	same	as	last	time

Enter	source	keystore	password:	secret

$	sudo	chown	activemq	keystore.jks

$	sudo	chmod	0400	keystore.jks

The	first	password	can	be	junk	like	secret	because	you	are	removing	the	file	immediately
after	creating	the	keyStore.	You’ll	need	to	save	the	keyStore	password	because	it	will	be
used	in	the	next	section.	It	is	best	to	use	a	completely	random	string	like	openssl	rand	-
base64	20	and	drop	the	final	character,	which	is	always	an	equals	sign	(=).

Tip

Alternative	ways	of	creating	Java	keyStores	can	be	found	in	the	“Setting	Up	Keystores
For	ActiveMQ”	section	of	the	Puppet	Labs	MCollective	documentation.

Configure	the	middleware	to	use	the	keystore
Now	in	/etc/activemq/activemq.xml,	let’s	set	up	the	SSL	connector	and	the	keyStore
definition:

<transportConnectors>

		<transportConnector	name="stomp+ssl"	uri="stomp+ssl://0.0.0.0:61614"/>

</transportConnectors>

<sslContext>

		<sslContext

				keyStore="ssl/keystore.jks"	keyStorePassword="password	from	creation	above"

		/>

</sslContext>

Configure	the	client	and	server	by	hand

http://bit.ly/1ruyfha

Add	the	following	lines	to	both	the	MCollective	server	and	client	configuration.	The
fallback	parameter	is	required	to	tell	MCollective	to	connect	without	its	own	private	key
information:

#	mcollective/server.cfg	or	mcollective/client.cfg

plugin.activemq.pool.1.port	=	61614

plugin.activemq.pool.1.ssl	=	true

plugin.activemq.pool.1.ssl.fallback	=	true

Testing
Once	you	have	completed	these	steps,	validate	that	the	keyStore	matches	up	with	your
original	key:

$	keytool	-list	-keystore	/etc/activemq/ssl/keystore.jks

Enter	keystore	password:

Keystore	type:	JKS

Keystore	provider:	SUN

Your	keystore	contains	1	entry

geode.netconsonance.com,	Feb	16,	2014,	PrivateKeyEntry,

Certificate	fingerprint	(MD5):	61:EA:B9:63:BE:C9:AB:D7:C4:D2:2F:F3:D4:66:E2:43

$	cd	/var/lib/puppet/ssl/certs

$	sudo	openssl	x509	-in	broker-name.pem	-fingerprint	-md5	|	head	-1

MD5	Fingerprint=61:EA:B9:63:BE:C9:AB:D7:C4:D2:2F:F3:D4:66:E2:43

After	you	enable	TLS,	test	in	the	exact	same	manner	as	described	in	“Testing	Your
Installation”.	You	may	also	want	to	examine	the	packets	in	Wireshark	to	confirm	that
SSL/TLS	encryption	was	used.

CA-Verified	TLS	Servers
A	more	complete	security	improvement	is	to	authenticate	connections	between
MCollective	nodes	and	the	middleware	using	TLS	keys	and	certificates.	This	option
ensures	that	communications	with	your	middleware	is	both	encrypted	and	limited	to
access	by	pre-authorized	client	certificates.	Access	to	the	middleware	will	require	both:

The	middleware	usernames	and	passwords	we	configured	in	“Configuring	ActiveMQ”
A	certificate	signed	by	a	Certificate	Authority	designated	in	the	broker’s	truststore

Note

This	is	a	good	security	model	if	you	want	to	ensure	that	every	client	and	server,	which
connect	to	the	middleware,	have	been	pre-approved.	It	has	the	added	setup	cost	of	creating
and	signing	keys	for	each	server	or	client	which	is	connecting.

Advantages
The	advantages	of	CA-Verified	TLS	include	the	following:

Validates	each	incoming	connection	for	a	certificate	signed	by	your	Certificate
Authority
Encrypts	the	data	stream	to	and	from	the	middleware	broker
Prevents	sniffing	of	ActiveMQ	logins	and	passwords
Not	vulnerable	to	man-in-the-middle	attacks
Requires	both	a	server	password	and	the	server’s	private	key	to	be	compromised	before
one	could	listen	in	on	MCollective	topics

Disadvantages
One	disadvantage	of	CA-Verified	TLS	is	that	it	requires	a	certificate	signed	by	your
Certificate	Authority	for	each	server	and	client.	

Setup	Paths
There	are	two	different	choices	for	doing	TLS	authentication.	The	first	and	easiest	choice
is	to	use	the	existing	key	infrastructure	of	Puppet.	This	requires	very	little	extra
configuration	and	takes	advantage	of	the	existing	Puppet	Certificate	Authority.

The	second	choice	is	to	create	or	use	your	own	Certificate	Authority	and	to	manually	sign
each	server	and	client	key.	This	is	more	labor	intensive.

We	document	both	of	these	choices	in	the	sections	that	follow.

TLS	using	Puppet	CA
In	this	section,	we	will	use	a	Puppet	Certificate	Authority	and	the	existing	Puppet	SSL
keys	and	certificates	to	secure	access	to	the	middleware.

Puppet	one-step	process
If	you	are	using	the	Puppet	module	provided	with	this	book,	you	need	only	the	following
Hiera	data,	and	all	three	of	the	following	steps	will	be	done	for	you.	No	other	changes	are
required.	Once	every	node	has	accepted	the	changes,	all	connections	will	be	encrypted
using	TLS:

mcollective::connector_ssl																		:	true

mcollective::connector_ssl_type													:	trusted

mcollective::middleware::keystore_password		:	use	a	random	string,	right?

mcollective::middleware::truststore_password:	string	a	random	use

Or	if	you	use	declarative	Puppet	manifests:
node	something-every-node-inherits	{

		class	{	'mcollective':

				connector_ssl							=>	true,

				connector_ssl_type		=>	'trusted',

		}

		class	{	'mcollective::middleware':

				keystore_password			=>	'use	a	random	string,	right?',

				truststore_password	=>	'random	use	string	a',

		}

}

Create	a	Java	trustStore	by	hand
The	Java	trustStore	will	be	created	based	on	the	Puppet	server’s	public	key.	We	cannot
use	a	public	CA,	as	that	would	allow	anyone	signed	by	the	public	CA	to	connect	to	our
system.	One	of	the	best	sources	of	this	information	is	the	existing	key	infrastructure
provided	by	Puppet.	Here’s	an	example	of	creating	the	truststore	using	the	Puppet	CA:

$	sudo	mkdir	/etc/activemq/ssl

$	cd	/etc/activemq/ssl

$	sudo	puppet	agent	--configprint	ssldir

/var/lib/puppet/ssl

$	keytool	-importcert	-alias	"puppet.example.net"	-file	

		/var/lib/puppet/ssl/certs/ca.pem	-keystore	truststore.jks	-storetype	JKS

Enter	keystore	password:	write	down	this	pass#1

Owner:	CN=Puppet	CA:	puppet.example.net

Issuer:	CN=Puppet	CA:	puppet.example.net

Serial	number:	1

Valid	from:	Sat	Jan	05	14:32:01	PST	2013	until:	Fri	Jan	05	14:32:01	PST	2018

Certificate	fingerprints:

		MD5:		F2:F8:C7:F7:45:92:DF:9A:BB:E0:0E:E9:F0:55:C6:B0

		SHA1:	84:5C:ED:3F:03:C2:19:DC:F9:95:A8:0E:32:65:9D:0E:B5:A4:81:AC

		Signature	algorithm	name:	SHA256withRSA

		Version:	3

...blah	Extensions	blah	ObjectId	blah	blah	Identifier	blah…

Trust	this	certificate?	[no]:	yes

Certificate	was	added	to	keystore

$	sudo	chown	activemq	truststore.jks

$	sudo	chmod	0400	truststore.jks

You’ll	need	to	save	this	trustStore	password,	because	it	will	be	used	in	the	middleware
configuration	files.

Create	a	Java	keyStore	by	hand

Next,	we	want	to	set	up	the	SSL	keys	used	for	negotiating	the	encrypted	connection.	The
following	example	uses	the	existing	Puppet	keypair	to	create	the	Java	keyStore:

$	mkdir	/etc/activemq/ssl

$	cd	/etc/activemq/ssl

$	sudo	puppet	agent	--configprint	ssldir

/var/lib/puppet/ssl

$	export	HOSTNAME=$(hostname	-f)

$	sudo	cat	/var/lib/puppet/ssl/certs/$HOSTNAME.pem	\

					/var/lib/puppet/ssl/private_keys/$HOSTNAME.pem	\

					>	$HOSTNAME-combined.pem

$	openssl	pkcs12	-export	-in	$HOSTNAME-combined.pem	-out	$HOSTNAME.p12	

		-name	$HOSTNAME

Enter	Export	Password:	secret

Verifying	-	Enter	Export	Password:	secret

$	sudo	keytool	-importkeystore	-storetype	JKS	-destkeystore	keystore.jks	\

				-srcstoretype	PKCS12	-srckeystore	$HOSTNAME.p12	-alias	$HOSTNAME

Enter	destination	keystore	password:	write	down	this	password

Re-enter	new	password:	use	the	same	as	last	time

Enter	source	keystore	password:	secret

$	rm	$HOSTNAME.p12	$HOSTNAME-combined.pem

$	sudo	chown	activemq	keystore.jks

$	sudo	chmod	0400	keystore.jks

The	first	password	can	be	junk	like	secret	because	you	are	removing	the	file	immediately
after	creating	the	keyStore.	You’ll	need	to	save	the	keyStore	password	because	it	will	be
used	in	the	next	section.	It	is	best	to	use	a	completely	random	string	like	openssl	rand	-
base64	20	and	drop	the	final	character,	which	is	always	an	equals	sign	(=).

Configure	the	broker	by	hand
Here	we	configure	ActiveMQ	to	use	the	Java	trustStore	and	keyStore	we’ve	created.
You’ll	need	to	put	the	passwords	you	used	previously	in	the	appropriate	places.	Add	the
following	lines	to	the	ActiveMQ	configuration	file	/etc/activemq/activemq.xml:

<transportConnectors>

		<transportConnector

				name="stomp+ssl"	uri="stomp+ssl://[::0]:61614?needClientAuth=true"

		/>

</transportConnectors>

<sslContext

		keyStore="ssl/keystore.jks"						keyStorePassword="keystore	password"

		trustStore="ssl/truststore.jks"		trustStorePassword="truststore	password"

/>

</sslContext>

Configure	the	MCollective	server	by	hand
Add	the	following	lines	to	the	MCollective	server	configuration	server.cfg:

plugin.activemq.pool.1.ssl						=	true

plugin.activemq.pool.1.port					=	61614

plugin.activemq.pool.1.ssl.ca			=	/var/lib/puppet/ssl/certs/ca.pem

plugin.activemq.pool.1.ssl.cert	=	/var/lib/puppet/ssl/certs/hostname.pem

plugin.activemq.pool.1.ssl.key		=	/var/lib/puppet/ssl/private_keys/hostname.pem

TLS	using	Another	CA
If	an	existing	Puppet	Certificate	Authority	is	not	available	or	not	appropriate,	this	section
provides	a	process	for	creating	a	new	CA,	or	using	your	existing	CA,	to	secure	access	to
the	middleware.

Warning

Creating	and	managing	SSL	keys	is	a	complex	topic	beyond	the	scope	of	this	book.	I	have
found	the	following	commands	to	work	when	testing,	but	Your	Mileage	May	Vary.

Create	a	new	Certificate	Authority	(optional)
If	you	do	not	have	an	existing	Certificate	Authority	to	use,	the	following	steps	will	create
one:

$	openssl	genrsa	-out	CA_key.pem	2048

Generating	RSA	private	key,	2048	bit	long	modulus….........+++

...+++

e	is	65537	(0x10001)

$	openssl	req	-x509	-new	-nodes	-key	CA_key.pem	-days	10240	-out	CA_cert.pem

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated

into	your	certificate	request.

...snip

Warning

Hide	that	key	away	in	a	dark	place.	It	is	now	literally	the	key	to	access	your	middleware.
If	that	key	is	compromised,	you	will	be	faced	with	the	very	annoying	task	of	replacing	it
and	re-creating	each	and	every	client	and	node	certificate.

Create	a	Java	trustStore	from	the	Certificate	Authority
Next,	we	create	the	Java	trustStore	from	the	public	key	of	our	Certificate	Authority.	We
cannot	use	a	public	CA,	as	that	would	allow	anyone	signed	by	the	public	CA	to	connect	to
our	system.	Here	is	the	process	of	creating	the	trustStore	from	the	CA’s	public	key:

$	keytool	-importcert	-alias	"MyCA"	-file	CA_cert.pem	\

				-keystore	truststore.jks	-storetype	JKS

Enter	keystore	password:	write	down	this	pass#1

Owner:	CN=My	CA:	myca.example.net

Issuer:	CN=My	CA:	myca.example.net

Serial	number:	1

Valid	from:	Sat	Jan	05	14:32:01	PST	2013	until:	Fri	Jan	05	14:32:01	PST	2018

Certificate	fingerprints:

		MD5:		F2:F8:C7:F7:45:92:DF:9A:BB:E0:0E:E9:F0:55:C6:B0

		SHA1:	84:5C:ED:3F:03:C2:19:DC:F9:95:A8:0E:32:65:9D:0E:B5:A4:81:AC

		Signature	algorithm	name:	SHA256withRSA

		Version:	3

...blah	Extensions	blah	ObjectId	blah	blah	Identifier	blah…

Trust	this	certificate?	[no]:	yes

Certificate	was	added	to	keystore

$	sudo	chown	activemq	truststore.jks

$	sudo	chmod	0400	truststore.jks

You’ll	need	to	save	this	trustStore	password,	because	it	will	be	used	in	the	middleware
configuration	files.

Create	a	TLS	Keypair	for	every	server
Next,	create	a	new	key	for	each	host	and	sign	it	with	your	Certificate	Authority.	Be	sure	to
avoid	making	the	certificate	expiration	longer	than	the	Certificate	Authority’s	lifetime:

$	openssl	genrsa	-out	node1_key.pem	2048

............+++

...+++

e	is	65537	(0x10001)

$	openssl	req	-new	-key	node1_key.pem	-out	node1.csr

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated

into	your	certificate	request.

...snip

$	openssl	x509	-req	-days	5120	-set_serial	01	-CA	CA_cert.pem	-CAkey	CA_key.pem	\

					-in	node1.csr	-out	node1_cert.pem

Signature	ok

subject=/C=US/ST=California/L=San	Jose/O=Example/CN=Node1

Getting	CA	Private	Key

Create	a	Java	keyStore
For	each	middleware	broker,	you	will	need	to	create	a	Java	keyStore.	Simply	combine	the
PEM	files	to	generate	a	PKCS12	file,	and	create	the	keyStore	from	that:

$	cd	/etc/activemq/ssl

$	sudo	cat	/etc/ssl/private/hostname_key.pem	/etc/ssl/certs/hostname_cert.pem	\

				>	combined.pem

$	openssl	pkcs12	-export	-in	combined.pem	-out	combined.p12	-name	$(hostname	-f)

Enter	Export	Password:	secret

Verifying	-	Enter	Export	Password:	secret

$	sudo	keytool	-importkeystore	-storetype	JKS	-destkeystore	keystore.jks	\

				-srcstoretype	PKCS12	-srckeystore	combined.p12	-alias	$(hostname	-f)

Enter	destination	keystore	password:	write	down	pass#2

Re-enter	new	password:	same	as	last	time

Enter	source	keystore	password:	secret

$	rm	combined.p12	combined.pem

$	sudo	chown	activemq	truststore.jks

$	sudo	chmod	0400	truststore.jks

You’ll	need	to	save	the	keyStore	password,	because	it	will	be	used	in	the	next	section.

Configure	the	broker	to	use	the	stores	we	made
Here	we	configure	ActiveMQ	to	use	the	Java	trustStore	and	keyStore	we’ve	created.
You’ll	need	to	put	the	passwords	you	used	in	the	previous	sections	in	the	appropriate
places.	Add	the	following	lines	to	the	ActiveMQ	configuration	file
/etc/activemq/activemq.xml:

<transportConnectors>

		<transportConnector

				name="stomp+ssl"	uri="stomp+ssl://[::0]:61614?needClientAuth=true"

		/>

</transportConnectors>

<sslContext>

		<sslContext

				keyStore="ssl/keystore.jks"					keyStorePassword="password	#2"

				trustStore="ssl/truststore.jks"	trustStorePassword="password	#1"

		/>

</sslContext>

Configure	the	MCollective	server	by	hand
Add	the	following	lines	to	the	MCollective	server	configuration	server.cfg:

plugin.activemq.pool.1.ssl						=	true

plugin.activemq.pool.1.port					=	61614

plugin.activemq.pool.1.ssl.ca			=	/etc/ssl/certs/CA_cert.pem

plugin.activemq.pool.1.ssl.cert	=	/etc/ssl/certs/node1_cert.pem

plugin.activemq.pool.1.ssl.key		=	/etc/ssl/private/node1_key.pem

Validate	keyStore	and	trustStore
No	matter	which	type	of	CA	you	chose	to	use,	stop	and	validate	that	the	keyStore	matches
up	with	your	original	key.	In	the	following	examples,	we	are	using	the	Puppet	cert
locations,	but	the	same	commands	work	wherever	you	stored	the	certificate:

$	keytool	-list	-keystore	/etc/activemq/ssl/keystore.jks

Enter	keystore	password:

Keystore	type:	JKS

Keystore	provider:	SUN

Your	keystore	contains	1	entry

geode.netconsonance.com,	Feb	16,	2014,	PrivateKeyEntry,

Certificate	fingerprint	(MD5):	61:EA:B9:63:BE:C9:AB:D7:C4:D2:2F:F3:D4:66:E2:43

$	sudo	openssl	x509	-in	/var/lib/puppet/ssl/certs/activemq.example.net.pem	\

			-fingerprint	-md5	|	head	-1

MD5	Fingerprint=61:EA:B9:63:BE:C9:AB:D7:C4:D2:2F:F3:D4:66:E2:43

Then	validate	that	the	trustStore	was	imported	correctly:
$	keytool	-list	-keystore	/etc/activemq/ssl/truststore.jks

Enter	keystore	password:

Keystore	type:	JKS

Keystore	provider:	SUN

Your	keystore	contains	1	entry

puppet.example.net,	Feb	16,	2014,	PrivateKeyEntry,

Certificate	fingerprint	(MD5):	F2:F8:C7:F7:45:92:DF:9A:BB:E0:0E:E9:F0:55:C6:B0

$	sudo	openssl	x509	-in	/var/lib/puppet/ssl/certs/ca.pem	\

		-fingerprint	-md5	|	head	-1

MD5	Fingerprint=F2:F8:C7:F7:45:92:DF:9A:BB:E0:0E:E9:F0:55:C6:B0

CA-Verified	TLS	Clients
Each	client	requires	its	own	certificate	in	order	to	connect.	A	common	way	would	be	to
make	each	user	have	her	own	certificate.	A	perhaps	less	cumbersome	way	is	to	create
certificates	for	each	team,	and	ensure	that	only	the	team	has	access	to	the	private	key.	You
can	likely	think	of	other	ways	to	break	this	out.	Either	way,	you	will	need	to	create	a	TLS
certificate	for	each	unique	entity	you	wish	to	validate.

Note

Although	this	will	be	cumbersome,	you	will	be	able	to	re-use	these	certificates	for
authorization,	as	described	in	Chapter	13.	The	certificate	file	name	minus	the	.pem
extension	will	be	the	name	logged	for	authentication.

Clients	of	the	Puppet	CA
One	way	to	create	client	certificates	is	to	generate	them	on	a	Puppet	master	with	puppet
cert	generate	username	and	then	copy	them	to	the	desired	system.	The	process	as
documented	at	Configure	MCollective	Clients	works	well	if	you	have	shared	network-
mounted	home	directories.

Unfortunately,	this	requires	each	user	generating	a	keypair	to	have	root	access	on	a	Puppet
master.	Moving	the	generated	keys	back	and	forth	can	also	be	problematic.

Warning

Distributing	keys	in	this	manner	means	that	someone	has	another	user’s	private	key.	If	you
are	all	working	from	the	same	nodes	and	you	all	have	root	access,	then	when	working	as
root	you	can	get	to	another	user’s	private	key.	But	if	you	want	clarity	on	who	issued	a
command,	have	users	generate	their	own	key	and	store	it	on	a	machine	only	they	have	root
access	to	—	such	as	their	laptop.

Create	a	Puppet	keypair	on	the	client	node
I	have	found	the	following	process	much	easier	to	perform	for	any	logged-in	user	(it	also
ensures	that	the	user’s	private	key	is	not	known	by	anyone	else):

client$	puppet	agent	--certname	user	--server	puppetmaster	--test

Info:	Creating	a	new	SSL	key	for	user

Info:	Caching	certificate	for	ca

Info:	csr_attributes	file	loading	from	/home/user/.puppet/csr_attributes.yaml

Info:	Creating	a	new	SSL	certificate	request	for	user

Info:	Certificate	Request	fingerprint	(SHA256):	83:26:59:C9:A2:A4:93:97:79:...

Info:	Caching	certificate	for	ca

Exiting;	no	certificate	found	and	waitforcert	is	disabled

An	admin	on	the	Puppet	master	need	only	issue	one	command:
puppetmaster$	sudo	puppet	cert	sign	user

Notice:	Signed	certificate	request	for	user

Notice:	Removing	file	Puppet::SSL::CertificateRequest	user	at

			'/var/lib/puppet-server/ssl/ca/requests/user.pem'

The	user	can	run	the	following	command	and	have	her	own	key,	cert,	and	CA	as	necessary
for	the	config:

client$	puppet	agent	--certname	user	--server	puppetmaster	--no-daemonize	\

--no-client	--verbose

Info:	Caching	certificate	for	user

Info:	Caching	certificate	for	user

Notice:	Starting	Puppet	client	version	3.5.1

Error:	Could	not	run:	Daemons	must	have	an	agent,	server,	or	both

That	error	is	the	exact	response	we	want	to	get.	The	--no-daemonize	--no-client
options	at	the	end	of	the	second	command	are	necessary	to	prevent	Puppet	from	trying	to
run.	If	you	don’t	supply	these	options,	the	Puppet	agent	will	try	to	run	a	default	catalog	on
your	system.	Logged	in	as	a	normal	user,	that	may	not	cause	any	problems,	but	it’s	best	to
be	avoided.

Warning

If	you	are	considering	using	autosign	to	avoid	having	to	sign	each	user’s	certificate,
realize	that	this	removes	the	trusted	nature	of	this	configuration.	It	would	provide	no	more
security	than	the	anonymous	configuration	and	yet	require	so	much	more	effort	on	your

http://bit.ly/1nwamjl

part.

Change	the	client	configuration
For	clients	to	utilize	their	own	keys,	they	will	need	to	create	a	personal	config	file.	The
default	file	name	looked	for	by	MCollective	clients	is	.mcollective	in	the	user’s	home
directory.	Alternative	configuration	files	can	be	specified	with	-c	config	on	the	command
line.

Add	the	following	lines	to	the	~/.mcollective	file	for	each	user:
plugin.activemq.pool.1.port					=	61614

plugin.activemq.pool.1.ssl						=	true

plugin.activemq.pool.1.ssl.ca			=	/home/user/.puppet/ssl/certs/ca.pem

plugin.activemq.pool.1.ssl.cert	=	/home/user/.puppet/ssl/certs/user.pem

plugin.activemq.pool.1.ssl.key		=	/home/user/.puppet/ssl/private_keys/user.pem

Warning

How	about	a	sneaky	little	trick?	Well,	if	a	user	has	root	access	on	a	Puppetized	machine,
he	will	be	able	to	access	the	middleware	using	the	node’s	Puppet	certificate.	It’s	a
perfectly	valid	certificate	signed	by	the	same	Puppet	CA.	This	is	one	more	reason	that
MCollective’s	authorization	is	so	important.

I	don’t	feel	that	this	is	a	security	problem.	If	a	node	is	part	of	the	puppet	framework,
allowing	it	to	connect	to	the	middleware	only	makes	sense.	If	users	have	root	access,	then
the	server	login	to	the	middleware	is	visible	to	them	anyway.	This	is	one	of	the	many
reasons	that	we	ensure	that	the	client	passwords	and	permissions	are	distinct.

Clients	Using	Another	CA
You’ll	need	to	follow	the	instructions	in	this	section	if	you	don’t	have	or	won’t	be	using
the	Puppet	Certificate	authority	to	sign	client	certificates.

Create	a	keypair	for	each	client
Each	user	who	wants	to	connect	will	need	to	generate	a	new	keypair	and	then	submit	a
signing	request:

$	mkdir	-p	~/.mcollective.d

$	cd	~/.mcollective.d

$	mkdir	-p	certs	private_keys	public_keys

$	openssl	genrsa	-out	private_keys/user.pem	2048

............+++

...+++

e	is	65537	(0x10001)

$	openssl	req	-new	-key	private_keys/user.pem	-out	user.csr

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated

into	your	certificate	request.

...snip

Sign	the	certificate	request
The	user	then	submits	the	resulting	CSR	file	to	be	signed.	An	administrator	with	access	to
that	all-important	private	key	will	use	the	following	commands	to	sign	the	user’s	request
with	the	Certificate	Authority	(be	sure	to	avoid	making	the	certificate	expiration	longer
than	the	Certificate	Authority’s	lifetime):

$	openssl	x509	-req	-days	5120	-set_serial	01	-CA	CA_cert.pem	-CAkey	CA_key.pem	\

				-in	user.csr	-out	user.pem

Signature	ok

subject=/C=US/ST=California/L=San	Jose/O=Jo	Rhett/CN=jorhett

Getting	CA	Private	Key

Warning

If	you	are	considering	allowing	anyone	to	access	and	sign	keys	in	order	to	reduce	help
requests,	realize	that	this	removes	the	trusted	nature	of	this	configuration.	It	would	provide
no	more	security	than	the	anonymous	configuration	and	yet	require	more	effort	on	your
part.	The	ability	to	sign	keys	must	be	limited	to	people	you	can	trust.

Change	the	Client	Configuration
The	resulting	PEM	file	and	the	certificate	CA_cert.pem	should	both	be	returned	to	the
user.	They	should	be	placed	in	the	directories	as	identified	here.	Add	the	following	lines	to
the	~/.mcollective	file	for	the	user,	or	any	other	configuration	file	specified	with	-c
config	on	the	command	line:

plugin.activemq.pool.1.port					=	61614

plugin.activemq.pool.1.ssl						=	true

plugin.activemq.pool.1.ssl.ca			=	/home/user/.mcollective.d/certs/CA_cert.pem

plugin.activemq.pool.1.ssl.cert	=	/home/user/.mcollective.d/certs/user.pem

plugin.activemq.pool.1.ssl.key		=	/home/user/.mcollective.d/private_keys/user.pem

Conclusion
There	are	two	ways	to	secure	the	nodes	connections	to	the	ActiveMQ	broker:

Anonymous	TLS	encryption	uses	only	the	server	certificate	for	generating	encryption
keys.	This	is	the	same	model	used	by	websites	and	is	easy	to	implement.
CA-Verified	TLS	encryption	provides	bidirectional	authentication	where	each	side
confirms	that	the	other	side’s	certificate	was	signed	by	the	same	Certificate	Authority.
This	requires	careful	signing	of	unique	keys	and	certificates	for	every	server	and	client.

Both	of	these	choices	will	protect	the	login	credentials	and	the	MCollective	data	from
being	sniffed	on	the	wire.

Chapter	12.	Creating	Collectives
A	collective	is	a	set	of	ActiveMQ	topics	and	queues	used	to	group	request	traffic.	In	small
installations,	you	should	use	a	single	collective.	The	installation	we	have	done	in	this	book
uses	the	default	collective	name	mcollective	for	all	configurations.

You	may	want	to	create	multiple	collectives	for	the	following	reasons:

Collectives	can	be	used	to	limit	traffic	in	large	clusters	or	between	sites.
Collectives	can	be	used	to	group	nodes	together	for	restricting	client	access.

Deciding	When	to	Create	More
There	are	a	few	reasons	why	you	may	want	to	implement	multiple	collectives	in	your
network:

You	have	more	than	a	thousand	servers.
You	have	multiple	locations	with	high	latency	between	them.
You	have	multiple	locations	and	you’d	like	to	reduce	the	network	traffic	between	them.
You	want	to	allow	local	admins	control	of	their	own	hosts,	while	allowing	a	global
team	to	administer	all	hosts.

Here	are	a	few	reasons	you	wouldn’t	want	to	implement	multiple	collectives:

You	want	fault	tolerance	in	your	middleware	setup.

Collectives	do	not	intrinsically	provide	fault	tolerance.	Fault	tolerance	can	be	created	by
using	a	network	of	brokers	or	master/slave	setup,	which	is	documented	in	“ActiveMQ
Clusters”.	Collectives	are	most	effective	at	limiting	traffic	when	placed	on	brokers
localized	to	each	site.

You	want	to	implement	barriers	for	authorization	control.

Although	you	can	restrict	clients	to	specific	collectives	to	limit	server	access,	this	isn’t	a
granular	authorization	mechanism.	We	suggest	using	the	facilities	documented	in
“Authorization”.		

You	have	different	Puppet	domains.

Although	Puppet	and	MCollective	play	nice	together,	their	domains	don’t	need	to
overlap.	You	can	use	a	single	MCollective	for	many	Puppet	domains	or	vice	versa.

If	you	didn’t	find	your	answer	in	this	list,	let’s	go	over	how	to	create	collectives.

Collectives	!=	Clustering
One	thing	to	understand	up	front	is	that	collectives	are	different	from	ActiveMQ	clusters.

A	collective	is	a	set	of	ActiveMQ	topics	and	queues	used	to	isolate	network	traffic.	An
ActiveMQ	cluster	provides	fault	tolerance	for	a	set	of	topics	and	queues.	It’s	quite	possible
to	run	hundreds	of	collectives	on	a	single	ActiveMQ	broker,	which	would	provide	zero
fault	tolerance.	Likewise,	you	could	use	dozens	of	ActiveMQ	brokers	to	provide	extensive
fault	tolerance	and	high	performance	for	a	single	collective.

Most	environments	use	something	in	between	these	two	extremes,	such	as:

A	master/slave	pair	of	brokers	that	support	all	collectives	for	single-site	redundancy
A	network	of	brokers	with	one	ActiveMQ	broker	in	each	location	which	hosts	all
collectives	at	that	site
A	network	of	brokers	with	multiple	ActiveMQ	brokers	in	each	location
A	combination	of	these	three	options

We	provide	some	examples	of	ActiveMQ	cluster	configuration	in	“ActiveMQ	Clusters”.
For	now,	it	is	only	important	to	realize	that	these	are	distinct.	The	collective	is	a	message
path	configured	on	top	of	network	of	brokers.

Note

If	you	are	familiar	with	the	OSI	model	for	networking,	it	is	not	entirely	accurate	but
easiest	to	think	of	clustering	as	Layer	4	and	collectives	as	Layer	6.	This	reflects	how	the
collective	is	an	application-specific	path	that	relies	on	the	transport	layer.

Configuration	Traffic
The	following	configuration	parameters	define	the	collectives	a	client	is	attached	to:

collectives	=	mcollective,asia,europe,usa

main_collective	=	mcollective

Place	each	server	only	in	the	relevant,	local	collectives:
collectives	=	mcollective,asia

main_collective	=	mcollective

You	can	query	the	servers	to	learn	which	collectives	they	are	part	of.	You	can	write	the
collective	structure	out	to	a	DOT	abstract	graph	to	be	read	with	Graphviz,	ZGRViewer,
and	various	conversion	utilities:

$	mco	inventory	--list-collectives

			Collective																					Nodes

			==========																					=====

			asia																											4

			europe																									7

			usa																												3

			mcollective																				14

																					Total	nodes:	14

$	mco	inventory	--collective-graph	all_sites.dot

Retrieving	collective	info….

Graph	of	14	nodes	has	been	written	to	all_sites.dot

You	can	query	a	given	server	to	learn	which	collectives	it	is	part	of:
$	mco	rpc	rpcutil	collective_info	-I	heliotrope

heliotrope

			All	Collectives:	["mcollective","asia"]

			Main	Collective:	mcollective

You	can	define	a	target	for	any	request	you	send	out,	thus	limiting	a	request	to	the
smaller	collective.	If	you	don’t	define	a	target,	the	request	will	be	sent	to	the	collective
identified	in	the	main_collective	parameter	of	your	client.cfg	file:

$	mco	ping	--target	asia

Only	the	nodes	in	the	asia	collective	will	respond.

Localizing	Traffic
The	middleware	will	only	send	traffic	where	it	knows	that	someone	is	listening.	This	is
due	to	how	the	topic	subscription	mechanism	works.	If	only	five	machines	have	the
Puppet	plugin	loaded	(and	are	thus	subscribed	to	the	collective.puppet.agent	topic),
only	those	five	machines	will	receive	requests	sent	out	from	the	Puppet	client	plugin.

Likewise,	if	all	systems	on	a	given	collective	are	attached	to	certain	brokers,	the
middleware	brokers	will	not	replicate	the	collective’s	messages	to	brokers	without	anyone
subscribed	to	those	topics	or	queues.	This	will	greatly	reduce	the	amount	of	traffic
traveling	between	the	sites.

To	gain	this	benefit,	design	your	collectives	as	such:

Use	one	collective	that	all	hosts	are	subscribed	to	for	registration	and	other	global
messages	(e.g.,	mcollective).
Add	one	collective	for	each	physical	or	infrastructure	distinct	area.	You	might	want	to
name	it	the	country,	city,	or	airport	code,	for	simplicity.

Configure	the	middleware	to	accept	the	same	client	and	server	logins	for	the	new
collective	names:

<authorizationEntry	queue="site.>"	write="clients"	read="clients"	

admin="clients"	/>

<authorizationEntry	topic="site.>"	write="clients"	read="clients"	

admin="clients"	/>

<authorizationEntry	topic="site.*.agent"	read="servers"	admin="servers"	/>

<authorizationEntry	queue="site.reply.>"	write="servers"	admin="servers"	/>

Configure	the	servers	in	that	area	as	follows:
collectives	=	mcollective,site-name

main_collective	=	mcollective

Then	configure	the	clients	to	have	every	local	site	available	in	their	configuration:
collectives	=	mcollective,site	#1,site	#2,site	#3

main_collective	=	mcollective

This	configuration	will	allow	the	administrators	to	issue	commands	only	to	specific	sites,
or	to	all	hosts	based	on	how	they	target	their	request:

$	mco	ping	--target	site	#2

...only	local	site	#2	nodes	respond

$	mco	puppet	runall	10	--target	mcollective

Puppet	runs	on	every	node	in	any	site

Limiting	Access
Another	reason	to	use	multiple	collectives	is	to	limit	access	to	local	admin	teams	at	each
site.	To	gain	this	benefit,	design	your	collectives	as	such:

Use	one	collective	that	all	hosts	are	subscribed	to	for	registration	and	other	global
messages	(e.g.,	mcollective).
Add	one	collective	for	each	set	of	servers	managed	by	a	distinct	set	of	clients.
Ensure	that	each	collective	has	a	unique	group	name	for	access.

Unfortunately,	the	configuration	changes	for	this	grow	linear	with	the	number	of	different
groups	you	have.	Each	group	of	admins	requires	a	unique	client	login	and	unique	group
name.	In	the	following	example,	we	will	demonstrate	a	two-group	system	using
administrators	and	developers.	Developers	can	only	take	actions	in	their	own	collective.
Global	administrators	with	the	client	login	can	act	in	every	collective:

<authenticationUser	username="dev-server"	password="dev	server	passwd"

		groups="dev-servers,everyone"

/>

<authenticationUser	username="dev"	password="dev	passwd"

		groups="dev-clients,everyone"

/>

<authorizationEntry	queue="dev.>"

		write="clients,dev-clients"	

		read="clients,dev-clients"	

		admin="clients,dev-clients"

/>

<authorizationEntry	topic="dev.>"

		write="clients,dev-clients"	

		read="clients,dev-clients"	

		admin="clients,dev-clients"

/>

<authorizationEntry	topic="dev.*.agent"

		read="servers,dev-servers"	admin="servers,dev-servers"

/>

<authorizationEntry	queue="dev.reply.>"

		write="servers,dev-servers"	admin="servers,dev-servers"

/>

This	leverages	our	earlier	configuration	such	that	the	main	client	login	will	continue	to
have	global	access	to	all	collectives,	while	each	of	these	new	logins	will	only	be	able	to
send	and	receive	messages	on	their	own	collectives.

Configure	the	servers	in	the	more	limited	collective	as	follows:
plugin.activemq.pool.1.user	=	dev-server

plugin.activemq.pool.1.password	=	dev	server	password

collectives	=	mcollective,dev

main_collective	=	mcollective

Configure	the	clients	to	have	the	local	collective	as	their	main	(default)	collective:
plugin.activemq.pool.1.user	=	dev

plugin.activemq.pool.1.password	=	dev	password

collectives	=	mcollective,dev

main_collective	=	dev

This	configuration	will	allow	the	dev	administrators	to	issue	requests	only	to	dev	systems,
while	the	global	admins	(with	the	username	and	password	to	the	client	account)	will
have	access	to	all	hosts:

$	mco	ping	--target	dev

...only	dev	nodes	respond—both	global	and	developer	admins	can	do	this

$	mco	puppet	runall	10	--target	mcollective

Puppet	runs	on	both	operations	and	dev	nodes—only	global	admins	can	do	this

Conclusion
The	use	of	multiple	collectives	can	assist	with	handling	scale	at	several	different	levels.	In
most	situations,	you	don’t	need	more	than	the	default	collective	until	you	are	experiencing
problems	with	scale	or	you	need	to	restrict	access	for	certain	groups	(customers,	dev
teams,	etc.).

It	is	good	to	understand	the	features	available	in	this	chapter,	but	I	wouldn’t	recommend
using	multiple	collectives	until	you	need	them.

Chapter	13.	MCollective	Security
As	you’ve	seen	in	Chapter	5,	MCollective	is	a	powerful	tool	capable	of	making	significant
change	in	a	very	short	time	period.	As	with	any	powerful	tool,	the	risk	of	something	going
wrong	and	the	damage	it	can	cause	are	both	increased.	This	chapter	describes	how	to	limit
that	risk	and	how	to	control	which	users	can	take	a	given	action	on	a	given	server.	

At	this	point,	your	MCollective	setup	uses	a	simple	security	model.	You	either	have	rights
to	issue	requests,	or	you	do	not.	You	may	want	a	security	model	with	more	granularity
than	that.	Here	are	some	reasons	to	evaluate	alternative	security	plugins:

Security	(authentication)	plugin

The	current	setup	uses	a	Pre-Shared	Key	to	create	an	MD5	hash	of	the	contents,	which
the	servers	use	to	ensure	that	the	plain-text	request	was	not	changed	in	flight.	You	may
want	cryptographic	validation	stronger	than	that.

Authorization	plugin

You	either	have	rights	to	issue	requests,	or	you	do	not.	You	may	want	a	security	model
with	granularity	to	limit	some	clients	to	specific	hosts	or	to	specific	requests.

Auditing	plugin

The	basic	log	files	aren’t	very	informative	about	who	issued	a	given	request.	You	may
want	a	detailed	log	of	accepted	and	denied	requests	and	who	submitted	them.

As	MCollective	has	a	plugin	architecture	for	security,	you’ll	find	considerable	flexibility
in	how	to	improve	that	situation.	There	is	no	singular	right	way	to	do	security	for
MCollective;	instead,	you	are	provided	with	tools	to	make	security	work	exactly	as	you
need.	In	this	chapter,	we’re	going	on	a	tour	of	options	for	improving	security	to	meet	your
needs.

This	section	describes	authentication	and	authorization	between	clients	(sending	requests)
and	servers	(validating	the	requests).	This	does	not	affect	security	of	the	middleware
transport,	which	was	described	in	Chapter	11.

As	the	security	is	provided	by	plugins,	each	organization	or	even	each	collective	of	hosts
can	use	a	different	security	model	that	meets	their	needs.	We’ll	compare	and	contrast	the
security	plugins	available	for	MCollective	and	document	how	to	enable	and	use	each	one
of	these.

Note

MCollective	documentation	refers	to	the	authentication	plugin	as	the	security	plugin.	I
don’t	prefer	this	term,	as	there	are	distinct	authorization	and	auditing	plugins	that	are	part
of	most	people’s	concept	of	security.	I	refer	to	it	as	the	authentication	plugin	in	this	section
for	clarity,	but	the	reader	should	be	aware	that	the	configuration	files	and	Puppet	Labs
documentation	refer	to	it	as	the	security	plugin.

How	Authentication	Works
When	sending	a	command	to	a	collective,	the	client	embeds	a	caller	identification	in	the
request.	It	works	like	this:

1.	 A	user	invokes	an	MCollective	client	request	like	mco	puppet	runonce.
2.	 The	client	authentication/security	plugin	sets	caller	and	adds	it	as	metadata	with	the

command.
3.	 The	client	publishes	the	message	to	the	middleware.
4.	 The	server	authentication/security	plugin	validates	the	digest	on	the	message.
5.	 The	server	authorization	plugin	validates	that	the	caller	is	authorized	to	make	this

request.
6.	 The	server	processes	the	request.

The	Pre-Shared	Key	plugin	we	have	used	thus	far	simply	embeds	the	Unix	uid	or	gid	in
the	request	as	the	caller.	Unless	every	client	system	is	known	to	have	the	exact	same
uid/gid	mappings,	and	no	user	has	local	root	(e.g.,	desktops	or	laptops),	the	caller
information	cannot	be	trusted	in	this	scenario.	All	you	know	for	certain	was	that	the	client
had	the	correct	Pre-Shared	Key.	Is	this	good	enough	for	your	environment?

For	more	granular	access	control,	you	may	want	to	use	the	SSL,	AES,	or	SSHKey	security
plugins	we	describe	later.	Each	of	these	plugins	use	public	keys	to	cryptographically
validate	the	identity	of	the	caller.

Pre-Shared	Key	Authentication
The	Pre-Shared	Key	authentication	plugin	creates	an	MD5	hash	of	each	request’s	data
with	the	pre-shared	key	appended.	This	hash	is	verified	by	each	server	to	ensure	that	the
request	was	sent	from	a	client	with	the	same	key	and	that	the	payload	had	not	been
modified.

Here’s	an	example	configuration	that	would	be	put	in	both	the	client	and	server
configuration	files:

#	Security	provider

securityprovider	=	psk

plugin.psk	=	super	secret

plugin.psk.callertype	=	uid

With	this	configuration,	the	client	will	insert:

A	caller	field	comprised	of	the	Unix	uid	into	the	request
A	hash	field	that	is	an	MD5	digest	of	the	message	contents	plus	the	Pre-Shared	Key

The	server	that	receives	this	request	will	perform	a	hash	of	the	message	contents	and	their
configured	key	information.	If	the	MD5	hash	matches	the	hash	in	the	request,	the	server
will	know	the	message	was	sent	by	an	authorized	person	(i.e.,	someone	who	has	the	same
Pre-Shared	Key);	see	Figure	13-1.	The	caller	information	will	be	passed	to	the
authorization	plugin,	if	enabled.

Figure	13-1.	The	data	is	passed	in	the	clear	with	an	MD5	hash	of	the
contents	and	the	Pre-Shared	Key

Warning

A	common	misconception	is	that	the	Pre-Shared	Key	is	used	for	encryption	of	the	request.
Read	the	previous	paragraph	carefully.	Examine	the	packets	using	Wireshark	and	you	will
see	the	username	and	password	in	the	clear.	The	only	cryptographic	data	is	the	MD5	hash.

The	PSK	value	is	salt	added	to	the	request	data	before	creating	the	hash.	As	such,	PSK	is
an	authentication	mechanism	which	confirms	only	that	the	client	has	the	same	secret	as
the	server	does	and	that	the	payload	data	has	not	been	changed.	It	provides	no	encryption
of	the	request	contents.

The	Pre-Shared	Key	plugin	is	useful	for	several	environments	where:

Small	team	environments	share	common	passwords.
All	clients	are	controlled	hosts	and	the	uid/gid	information	is	synchronized
consistently.
The	protection	provided	by	TLS-encrypted	connections	to	the	middleware	is	sufficient.

Here’s	a	quick	determination	for	whether	this	model	works	well	for	you:	do	all	of	you
share	the	same	root	password	among	yourselves?	If	so,	this	plugin	may	provide	all	the

security	you	need.	The	single	shared	hash	provides	the	same	level	of	security.

If	you	do	use	the	PSK	model,	we	do	encourage	the	use	of	TLS	encryption	to	protect	the
data	(see	Figure	13-2).

Figure	13-2.	The	data	and	a	MD5	hash	of	the	contents	and	the	Pre-Shared
Key	are	both	encrypted	during	transit

The	PSK	plugin	has	only	two	options:	key	and	callertype.	The	callertype	can	be	one
of	the	following:

Callertype Information	included	in	the	request

uid The	UID	of	the	user	running	client	program	(default)

gid The	GID	of	the	group	running	client	program

user The	username	matching	the	UID	running	the	client	program

group The	group	matching	the	GID	running	the	client	program

identity The	identity	configuration	parameter	of	the	client	(configurable,	defaults	to	the	hostname)

Which	callertype	to	use	depends	upon	your	needs.	Your	choice	will	control:

What	value	you	can	compare	in	the	authorization	policy
What	information	is	shown	in	the	audit	log

Puppet	Setup
If	you	are	using	the	Puppet	module	provided	with	this	book,	the	following	Hiera	options
will	enable	the	Pre-Shared	Key	authentication	plugin	in	your	server	and	client
configuration	files:

mcollective::security_provider:	'psk'

mcollective::psk_key										:	'super	secret'

mcollective::psk_callertype			:	[uid	|	gid	|	group	|	user	|	identity]

You	could	of	course	pass	them	into	the	module	as	parameters	if	you	use	declarative	Puppet
manifests:

class	{	'mcollective':

		security_provider	=>	'psk',

		psk_key											=>	'super	secret',

		psk_callertype				=>	'uid',

}	

SSL	Authentication
When	using	the	SSL	security	plugin,	each	client	issuing	commands	must	have	a	unique
private	and	public	key.	All	servers	will	share	the	same	public	and	private	key.	This	allows
for	cryptographic	assurance	of	each	client	request.	For	this	security	module	to	work,	the
following	must	be	true:

All	servers	share	a	single	public/private	keypair.
Each	client	must	have	the	server	public	key.
Each	client	will	sign	each	request	with	its	own	private	key.
Each	server	must	have	the	client’s	public	key	in	order	to	validate	the	request.

With	this	configuration,	the	client	will	do	the	following	(as	illustrated	in	Figure	13-3):

1.	 Insert	a	caller	field	comprised	of	the	client	certificate’s	filename	into	the	request
2.	 Serialize	the	message	body,	the	message	time,	and	the	time-to-live
3.	 Insert	a	hash	field	containing	a	cryptographic	signature	of	the	serialized	data

Figure	13-3.	The	data	is	passed	in	the	clear	with	a	SSL-signed	hash	of	the
contents

When	the	message	is	received	by	the	server,	it	will	use	the	client’s	public	key	to	validate
the	signature	and	confirm	that	the	message	is	from	a	valid	caller,	and	that	the	message
time	and	time-to-live	haven’t	been	altered.

If	you	combine	this	with	TLS	encryption	on	the	middleware,	then	you	have	both	an
encrypted	tunnel	(provided	by	TLS)	and	cryptographic	validation	of	the	client’s	request
(Figure	13-4).	This	is	Puppet	Lab’s	recommended	solution.

Figure	13-4.	The	data	and	a	SSL-signed	hash	of	the	contents	are	encrypted
by	TLS

Server	Configuration
With	the	SSL	security	model,	the	server	private	and	public	key	is	common	and	shared
among	every	server.	You	can	create	the	server	keypair	like	so:

$	mkdir	server

$	cd	server

$	openssl	genrsa	-out	private.pem	2048

Generating	RSA	private	key,	2048	bit	long	

modulus…..+++

..+++

e	is	65537	(0x10001)

$	openssl	rsa	-in	private.pem	-out	public.pem	-outform	PEM	-pubout

writing	RSA	key

$	cd	..

Move	these	files	to	mcollective’s	directory	and	safeguard	them:
$	chmod	400	server/private.pem

$	sudo	chown	-R	root:root	server/

$	sudo	mkdir	-p	/etc/mcollective/ssl/clients

$	sudo	mv	server	/etc/mcollective/ssl/

To	use	these	keys	you	would	remove	the	two	lines	referencing	the	PSK	plugin	from
server.cfg	and	add	the	following	lines:

securityprovider											=	ssl

plugin.ssl_server_private		=	/etc/mcollective/ssl/server/private.pem

plugin.ssl_server_public			=	/etc/mcollective/ssl/server/public.pem

plugin.ssl_client_cert_dir	=	/etc/mcollective/ssl/clients

Installing	and	synchronizing	with	Puppet
If	you	are	using	the	Puppet	module	provided	with	this	book,	you	would	run	the	following
commands	to	move	those	keys	and	files	into	the	Puppet	module	directory.	The	Puppet
module	will	distribute	the	key	pair	out	to	all	servers	automatically:

$	chmod	440	server/private.pem

$	sudo	mv	server/*	/etc/puppet/modules]/mcollective/files/ssl/server/

$	sudo	chown	-R	root:puppet	/etc/puppet/modules]/mcollective/files/ssl/server

The	following	Hiera	options	will	enable	the	appropriate	configuration	in	your	server.cfg
file:

mcollective::server::security_provider	:	ssl

#	The	following	are	defaults	which	can	be	overridden

mcollective::ssl_server_private								:	/etc/mcollective/ssl/server/private.pem

mcollective::plugin.ssl_server_public		:	/etc/mcollective/ssl/server/public.pem

mcollective::plugin.ssl_client_cert_dir:	/etc/mcollective/ssl/clients/

Client	Configuration
Each	client	will	require	a	public	and	private	key	in	order	for	their	requests	to	be	validated.
The	most	common	implementation	is	for	all	users	to	generate	their	own	public	and	private
keys	and	never	share	them	with	others.

Tip

Another	method	is	to	create	certificates	for	each	team,	and	ensure	that	only	that	team	has
access	to	the	private	key.	You	can	likely	think	of	other	ways	to	facilitate	access.	The
important	thing	to	consider	is	the	depth	to	which	you	need	to	authorize	and	audit.	If	you
authenticate	with	a	shared	group	key,	you	won’t	know	which	user	made	the	request.

The	private	key	should	be	kept	secure	and	not	shared	beyond	the	people	authorized	to	use
it.	The	public	key	must	be	distributed	to	every	MCollective	server	where	this	key	may	be
used	to	sign	a	request.

Create	a	client	identity
Start	out	by	creating	a	directory	to	store	the	client	keys:

$	mkdir	-p	~/.mcollective.d

$	cd	~/.mcollective.d

$	mkdir	-p	certs	private_keys	public_keys

If	you	already	generated	Puppet	keys	for	a	Trusted	TLS	connector,	you	can	reuse	those
same	keys:

$	cd	certs

$	ln	-s	~/.puppet/ssl/certs/ca.pem

$	cd	../private_keys

$	ln	-s	~/.puppet/ssl/private_keys/user.pem

$	cd	../public_keys

$	ln	-s	~/.puppet/ssl/public_keys/user.pem

$	sudo	cp	user.pem	/etc/mcollective/ssl/clients/

If	you	created	a	new	identity	with	a	different	CA	from	“CA-Verified	TLS	Clients”,	you
may	have	everything	except	the	public	key.	Create	that	now	using	these	steps:

$	mkdir	public_keys

$	openssl	rsa	-in	private_keys/user.pem	-out	public_keys/user.pem	-outform	PEM	

		-pubout

writing	RSA	key

If	you	don’t	have	an	existing	keypair,	you	can	generate	a	client	keypair	using	Puppet	as
described	in	“CA-Verified	TLS	Clients”,	or	you	can	create	a	new	keypair	using	openssl:

$	openssl	genrsa	-out	private_keys/user.pem	2048

Generating	RSA	private	key,	2048	bit	long	

modulus…..+++

..+++

e	is	65537	(0x10001)

$	chmod	0400	private_keys/user.pem

$	openssl	rsa	-in	private_keys/user.pem	-out	public_keys/user.pem	-outform	PEM	

		-pubout

writing	RSA	key

$	sudo	cp	public_keys/user.pem	/etc/mcollective/ssl/clients/

Create	a	config	file
As	each	client	will	need	to	reference	a	unique	set	of	keys,	you	will	need	to	create	a	unique
configuration	file	per	keypair	at	this	time.	If	a	system	is	used	by	only	one	person	(personal
desktop	or	laptop),	you	could	add	the	following	lines	to	the	global	client	configuration

/etc/mcollective/client.cfg.	Otherwise	you	should	add	these	lines	to	the	user’s	individual
client	configuration.

The	first	file	check	for	client	configuration	is	.mcollective	in	the	user’s	home	directory.	If
this	file	exists,	the	global	client	configuration	will	be	ignored.	The	configuration	file	must
be	whole	and	complete:

$	cp	/etc/mcollective/client.cfg	~/.mcollective

$	$EDITOR	~/.mcollective

Warning

This	defies	the	standard	Unix/Linux	convention,	where	dot-program	would	be	a	directory
containing	configuration	files	specific	to	the	program.	A	prevailing	convention	for	a
directory	containing	files	for	MCollective	is	.mcollective.d.	We	used	this	directory	when
creating	the	public	and	private	key	files	earlier.

To	enable	SSL	authentication,	you	would	change	the	securityprovider	line	to	say	ssl.
Configuration	lines	referencing	the	psk	or	another	other	security	connector	can	be
removed.	As	the	client	will	encrypt	the	hash	for	the	server,	the	client	configuration	needs
to	reference	the	server’s	shared	public	key.	Finally	the	configuration	needs	to	identify	the
public	and	private	keys	we	created.	So	the	changes	will	look	as	follows:

#	security	section	of	/etc/mcollective/client.cfg	or	~/.mcollective

securityprovider	=	ssl

plugin.ssl_server_public	=	/etc/mcollective/ssl/server/public.pem

plugin.ssl_client_private	=	/home/user/.mcollective.d/private_keys/user.pem

plugin.ssl_client_public	=	/home/user/.mcollective.d/public_keys/user.pem

Another	alternative	is	for	users	to	specify	the	key	locations	in	their	shell	environment:
export	MCOLLECTIVE_SSL_PRIVATE=/home/user/.mcollective.d/private_keys/user.pem

export	MCOLLECTIVE_SSL_PUBLIC=/home/user/.mcollective.d/public_keys/user.pem

Note

In	the	GitHub	repo	for	this	book,	there	is	a	Puppet	class	called	mcollective::userconfig
that	will	autobuild	individual	user	key	pairs.	Unfortunately	it	doesn’t	handle	all	situations
very	well,	so	I	didn’t	include	it	with	the	book.	You	may	want	to	keep	an	eye	on	it	at
http://bit.ly/1ryhxxe	in	case	I	figure	out	a	way	to	handle	all	situations	cleanly.

http://bit.ly/1ryhxxe

Key	Synchronization
SSL	authentication	requires	that	three	different	synchronization	issues	be	solved:

Every	server	must	have	the	same	public	and	private	key.
Every	server	must	have	the	public	key	of	every	client.
Every	client	must	have	the	shared	public	key	of	the	servers.

The	Puppet	module	handles	all	three	of	the	preceding	synchronization	problems	for	you.
Just	store	the	files	as	shown	and	then	go	grab	a	beer:

Type Path	on	the	Puppet	server

Server	Private	Key modulepath/mcollective/files/ssl/server/private.pem

Server	Public	Key modulepath/mcollective/files/ssl/server/public.pem

Client	Public	Keys modulepath/mcollective/files/ssl/clients

$	sudo	cp	public_keys/user.pem	\

		/etc/puppet/environments/learning_mcollective/modules/mcollective/files/

		ssl/clients/

$	sudo	echo	"Get	me	a	Beer"

If	you	aren’t	using	the	Puppet	module,	you	will	need	to	synchronize	the	following:

The	client	public	keys	to	each	server’s	/etc/mcollective/ssl/clients/	folder
The	server	public	key	to	each	client	as	/etc/mcollective/ssl/server/public.pem:
$	sudo	cp	public_keys/user.pem	/etc/mcollective/ssl/clients/

$	rsync	-av	public_keys/*	serverX:/etc/mcollective/ssl/clients/

$	rsync	-av	public_keys/*	serverY:/etc/mcollective/ssl/clients/

...start	thinking	about	how	to	automate	this...

RSA	Authentication	AES	Encryption
When	using	the	AES	security	plugin,	each	user	issuing	commands	must	have	a	private	and
public	key.	Each	server	will	also	have	a	unique	public/private	keypair.	This	allows	for
cryptographic	assurance	of	each	client	request	and	cryptographic	assurance	of	both	replies
from	servers	as	well	as	data	delivery	from	server	to	server,	such	as	registration
information.

For	this	security	module	to	work,	the	following	must	be	true:

Each	server	must	have	a	unique	public/private	keypair.
Each	client	must	have	its	own	public/private	keypair.
Each	server	must	have	the	public	key	for	every	client.

Each	request	is	encrypted	with	the	client’s	private	key.	Only	servers	with	the	client’s
public	key	can	decrypt	and	process	them.

Each	reply	is	encrypted	with	the	client’s	public	key.	Only	the	client	with	that	private	key
can	decrypt	and	read	the	replies.

Registration	data	and	other	requests	from	servers	are	encrypted	with	the	server’s	private
key.	Only	client’s	with	the	server’s	public	key	can	view	the	data.

Server	Configuration
The	server	configuration	can	be	made	simple	by	re-using	an	existing	Puppet	Certificate
Authority.

Puppet	module
If	you	are	using	the	Puppet	module	provided	with	this	book,	you	don’t	need	to	generate
keys	for	each	server.	Every	Puppet	host	already	has	a	unique	public/private	key	pair	that
the	server	will	reuse.

The	following	Hiera	option	will	enable	the	appropriate	configuration	in	your	server.cfg
file:

mcollective::server::securityprovider:	aes_security

Manual	config
The	manual	process	to	create	a	keypair	for	the	server	is	as	follows:

$	cd	/etc/ssl

$	openssl	genrsa	-out	private_keys/user.pem	2048

Generating	RSA	private	key,	2048	bit	long	

modulus…..+++

..+++

e	is	65537	(0x10001)

$	chmod	0400	private_keys/user.pem

$	openssl	rsa	-in	private_keys/user.pem	-out	public_keys/user.pem	-outform	PEM	\

		-pubout

writing	RSA	key

Modify	the	server	configuration	to	use	the	newly	generated	keys.	Remove	the	lines
referencing	the	PSK	or	SSL	plugin	from	server.cfg	and	add	the	following	lines	to
/etc/mcollective/server.cfg:

securityprovider											=	aes_security

plugin.aes.server_public			=	/etc/ssl/public_keys/certname.pem

plugin.aes.server_private		=	/etc/ssl/private_keys/certname.pem

plugin.aes.client_cert_dir	=	/etc/mcollective/ssl/clients

plugin.aes.enforce_ttl					=	true

Client	Configuration
Each	client	will	require	a	public	and	private	key	for	its	requests	to	be	validated.	The	most
common	implementation	is	for	all	users	to	generate	their	own	public	and	private	keys	and
never	share	them	with	others.

Tip

Another	method	is	to	create	certificates	for	each	team	and	ensure	that	only	that	team	has
access	to	the	private	key.	You	can	likely	think	of	other	ways	of	breaking	this	out.	The
important	thing	to	consider	is	the	depth	to	which	you	need	to	authorize	and	audit.	If	you
authenticate	with	a	shared	group	key,	you	won’t	know	which	specific	user	made	the
request.

The	private	key	should	be	kept	secure	and	not	shared	beyond	the	people	authorized	to	use
it.	The	public	key	must	be	distributed	to	every	MCollective	server	where	this	key	may	be
used	to	sign	a	request.

Create	a	client	identity
Start	out	by	creating	a	directory	to	store	the	client	keys:

$	mkdir	-p	~/.mcollective.d

$	cd	~/.mcollective.d

$	mkdir	-p	certs	private_keys	public_keys

If	you	already	generated	Puppet	keys	for	a	Trusted	TLS	connector,	you	can	easily	reuse
those	same	keys:

$	cd	certs

$	ln	-s	~/.puppet/ssl/certs/ca.pem

$	cd	../private_keys

$	ln	-s	~/.puppet/ssl/private_keys/user.pem

$	cd	../public_keys

$	ln	-s	~/.puppet/ssl/public_keys/user.pem

$	sudo	cp	user.pem	/etc/mcollective/ssl/clients/

If	you	created	a	new	identity	with	a	different	CA,	you	may	have	everything	except	the
public	key.	Create	that	now	using	these	steps:

$	mkdir	public_keys

$	openssl	rsa	-in	private_keys/user.pem	-out	public_keys/user.pem	-outform	PEM	\

		-pubout

writing	RSA	key

If	you	don’t	have	an	SSL	keypair	to	use,	you	can	create	a	new	keypair	from	scratch.
Generate	your	own	keypair	using	Puppet	as	described	in	“CA-Verified	TLS	Clients”,	or
create	a	new	keypair	using	openssl:

$	openssl	genrsa	-out	private_keys/user.pem	2048

Generating	RSA	private	key,	2048	bit	long	

modulus…..+++

..+++

e	is	65537	(0x10001)

$	chmod	0400	private_keys/user.pem

$	openssl	rsa	-in	private_keys/user.pem	-out	public_keys/user.pem	-outform	PEM	\

		-pubout

writing	RSA	key

$	sudo	cp	public_keys/user.pem	/etc/mcollective/ssl/clients/

Create	a	config	file
As	each	client	will	need	to	reference	a	unique	set	of	keys,	you	will	need	to	create	a	unique

configuration	file	per	keypair	at	this	time.	If	a	system	is	used	by	only	one	person	(personal
desktop	or	laptop),	you	could	add	the	following	lines	to	the	global	client	configuration
/etc/mcollective/client.cfg.	Otherwise	you	should	add	these	lines	to	the	user’s	individual
client	configuration.

The	first	file	check	for	client	configuration	is	.mcollective	in	the	user’s	home	directory.	If
this	file	exists,	the	global	client	configuration	will	be	ignored.	The	configuration	file	must
be	whole	and	complete:

$	cp	/etc/mcollective/client.cfg	~/.mcollective

$	$EDITOR	~/.mcollective

Warning

This	defies	the	standard	Unix/Linux	convention	where	dot-program	would	be	a	directory
containing	configuration	files	specific	to	the	program.	A	prevailing	convention	for	a
directory	containing	files	for	MCollective	is	.mcollective.d.	We	used	this	directory	when
creating	the	public	and	private	key	files	earlier.

To	enable	AES	authentication,	you	would	change	the	securityprovider	line	to	say
aes_security.	Configuration	lines	referencing	psk,	ssl,	or	another	other	security
connector	can	be	removed.	As	the	client	will	encrypt	the	hash	for	the	server,	a	directory
containing	server	public	keys	needs	to	be	listed.	Finally,	the	configuration	needs	to
identify	the	public	and	private	keys	we	created.	So	the	changes	will	look	as	follows:

#	security	section	of	/etc/mcollective/client.cfg	or	~/.mcollective

securityprovider	=	aes_security

plugin.aes_client_private	=	/home/user/.mcollective.d/private_keys/user.pem

plugin.aes_client_public	=	/home/user/.mcollective.d/public_keys/user.pem

Another	alternative	is	for	users	to	specify	the	key	locations	in	their	shell	environment:
export	MCOLLECTIVE_AES_PRIVATE=/home/user/.mcollective.d/private_keys/user.pem

export	MCOLLECTIVE_AES_PUBLIC=/home/user/.mcollective.d/public_keys/user.pem

Note

As	mentioned	earlier,	the	GitHub	repo	for	this	book	contains	a	Puppet	class
mcollective::userconfig	that	attempts	to	autobuild	individual	user	key	pairs.	Keep	an
eye	on	it	at	http://bit.ly/1ryhxxe	in	case	I	figure	out	a	way	to	handle	all	situations	cleanly.

http://bit.ly/1ryhxxe

Key	Synchronization
RSA/AES	Authentication	requires	that	three	different	synchronization	issues	be	solved:

Every	server	must	have	a	unique	public	and	private	key.
Every	server	must	have	the	public	key	of	every	client.
Every	listener	(registration,	results	processor,	etc.)	must	have	the	public	key	of	every
server.

The	Puppet	module	handles	all	three	of	the	preceding	synchronization	problems	for	you.
Just	store	the	files	as	shown	and	then	go	grab	a	beer:

Type Path	on	the	Puppet	server

Server	Private	Key modulepath/mcollective/files/ssl/server/private.pem

Server	Public	Key modulepath/mcollective/files/ssl/server/public.pem

Client	Public	Keys modulepath/mcollective/files/ssl/clients

$	cd	/etc/puppet/environments/learning_mcollective/modules/mcollective/files

$	sudo	cp	~/.mcollective.d/ssl/public_keys/user.pem	ssl/clients/

$	sudo	echo	"Get	me	a	Beer"

If	you	aren’t	using	the	Puppet	module,	you	will	need	to	synchronize	the	following:

The	client	public	keys	to	each	server’s	/etc/mcollective/ssl/clients/	folder
The	server	public	key	to	each	listener	as	/etc/mcollective/ssl/server/public.pem:
$	sudo	cp	public_keys/user.pem	/etc/mcollective/ssl/clients/

$	rsync	-av	public_keys/*	serverX:/etc/mcollective/ssl/clients/

$	rsync	-av	public_keys/*	serverY:/etc/mcollective/ssl/clients/

...start	thinking	about	how	to	script	this…

Tip

If	you	read	the	documentation	for	this	module,	you	will	find	that	there	are	options	to	auto-
distribute	public	keys	between	the	systems.	In	my	opinion,	this	provides	equivalent	or	less
security	than	the	SSL	security	module,	and	therefore	it	is	extra	overhead	with	a	net
security	loss.

SSHKey	Authentication
The	SSHKey	security	plugin	utilizes	a	pre-existing	structure	of	SSH	host	and	user	keys.
This	allows	unique	identification	of	all	users	based	on	their	private	SSH	keys	and
validation	of	the	reply	from	the	server	against	their	known	public	keys.	

For	this	to	work,	the	following	must	be	true:

Each	user	has	every	host’s	public	SSH	key	in	~/.ssh/known_hosts	or	an	alternative	file
specified	in	the	configuration.
Each	host	has	each	user’s	SSH	public	key	in	~/.ssh/authorized_keys	or	an	alternative
file	specified	in	the	configuration.
Every	client	and	server	needs	to	have	the	sshkeyauth	Gem	installed.

This	is	not	uncommon	in	a	small	environment	where	every	user	logs	into	every	host,	or
where	configuration	management	ensures	that	known_hosts	and	authorized_keys	files	are
kept	in	sync.

Let’s	take	a	look	at	an	example	configuration	that	would	be	put	in	both	the	client	and
server	configuration	files.	In	mcollective/server.cfg,	use	the	following:

#	Security	provider

securityprovider	=	sshkey

plugin.sshkey.server.authorized_keys	=	/etc/ssh/authorized_keys			

#	instead	of	~/.ssh/authorized_keys

In	mcollective/client.cfg,	use	the	following:
#	Security	provider

securityprovider	=	sshkey

plugin.sshkey.client.known_hosts	=	/etc/ssh/known_hosts		

#	instead	of	~/.ssh/known_hosts

With	this	configuration,	the	client	will	sign	the	command	using	the	user’s	private	SSH	key
from	~/.ssh/id_pub_rsa	as	expected.	The	server	will	validate	the	command	against	public
keys	stored	in	/etc/ssh/authorized_keys.	It	will	sign	its	reply	with	its	own	private	key	from
/etc/ssh/ssh_host_rsa_key,	and	the	client	will	validate	the	reply	by	checking	the	signature
against	/etc/ssh/known_hosts.

Puppet
If	you	are	using	the	Puppet	module	provided	with	this	book,	the	following	Hiera	options
will	enable	the	appropriate	configuration	in	your	server	and	client	configuration	files:

mcollective::security_provider																:	sshkey

mcollective::server::sshkey_authorized_keys			:	/etc/ssh/authorized_keys

mcollective::client::sshkey_client_known_hosts:	/etc/ssh/known_hosts

Warning

If	you	read	the	documentation	for	this	module,	you	will	find	that	there	are	options	to	auto-
distribute	public	keys	between	the	nodes.	In	my	opinion,	this	provides	significantly	less
security,	and	depending	on	the	configuration	of	the	server,	it	actually	would	open	the	node
up	to	breach	via	SSH	protocol.

This	is	the	security	equivalent	of	showing	up	with	a	badge	and	handing	the	security	guard
the	rules	for	how	to	validate	the	badge.	The	node	will	keep	the	new	key	around,	and
possibly	even	replace	the	existing	keys	for	a	user.	Shudder.

I	do	not	recommend	the	use	of	these	options.

Authorization
In	this	section,	we	will	cover	authorization,	the	final	check	before	a	request	is	processed
by	an	MCollective	server.	Authorization	provides	the	strongest	and	yet	the	most	flexible
piece	of	MCollective	security.	I	believe	that	authorization	is	one	of	the	most	underused
and	overlooked	features	that	MCollective	provides.

The	deployment	we	have	created	so	far	limits	who	can	send	requests	based	on
authentication.	A	person	with	the	right	password,	the	right	pre-shared	key,	or	possibly	a
signed	certificate	is	allowed	to	submit	any	request	on	any	system.	This	is	true,	unlimited
power	(cue	demonic	laughter).

This	is	reasonable	and	works	well	for	many	smaller	environments	in	which	a	small	group
of	users	are	the	only	ones	allowed	to	act.	If	you	have	multiple	teams,	a	diverse	set	of
managed	systems,	or	a	wide	variety	of	agent	plugins,	you	may	wish	to	limit	who	can	act
upon	which	resources.	Utilizing	an	authorization	plugin	provides	you	the	ability	to	limit
the	possible	changes	of	a	given	user,	on	a	given	host,	for	a	given	agent.

Authorization	is	a	topic	distinct	and	yet	dependent	on	our	choice	of	authentication.	The
authorization	plugin	uses	the	caller	and	request	information	validated	by	the	security
(authentication)	plugin	and	decides	whether	or	not	the	request	is	allowed	to	proceed.

Warning

Be	careful	when	pushing	out	an	authorization	policy.	You	should	ensure	you	have	another
method	to	log	in	to	each	server	to	fix	any	mistake	or	a	safety-net	policy	that	will	allow	you
to	regain	access.

For	any	deployment	with	more	than	one	administrator,	I	recommend	that	you	deploy	the
ActionPolicy	authorization	plugin	to	all	servers.	ActionPolicy	uses	policy	rules	for	each
agent,	providing	complete	flexibility	to	restrict	or	allow	on	a	per-agent	basis.

Rule	Format
The	format	of	an	ActionPolicy	rule	is	tab-separated	with	the	following	fields:

Field
#

Name Description Values

1 Policy allow	or	deny 	

2 Caller The	caller	string	provided	in	the	request *	(always	matches)

One	Caller	string	(discussed	in	the	next	section)

3 Action An	action	provided	by	the	agent	the
policy	rule	is	for

*	(always	matches)

A	space-separated	list	of	actions

4 Facts Facts	that	must	be	true	about	the	target
server

*	(always	matches)

A	space-separated	list	of	fact=value	pairs	(matches	if	every
listed	fact	matches)

Any	valid	compound	filter	string

5 Classes Puppet	classes	that	apply	to	the	target
server

Absent	or	*	(always	matches)

A	space-separated	list	of	class	names	(matches	if	every	listed
class	is	present)

Any	valid	compound	filter	string

You	can	of	course	create	an	authorization	policy	that	uses	a	different	file	format,	and	a
custom	agent	could	do	authorization	based	on	its	own	criteria.	We	cover	that	functionality
in	Part	III.

Caller	IDs
No	matter	what	authorization	plugin	you	use,	one	of	the	fields	available	for	matching	is
the	caller	field	from	the	request.	This	field	is	set	differently	based	on	which	security
provider	plugin	you	are	using:

The	PSK	security	plugin	sets	the	caller	ID	to	uid=uid	of	the	user	running	the	client	app.

This	can	be	modified	by	setting	plugin.psk.callertype	in	the	configuration	to	gid,
user,	group,	or	identity.	As	uids	and	usernames	are	not	consistent	across	hosts,	these	are
not	considered	trustworthy.

The	TLS	security	plugins	set	the	caller	ID	to	cert=client’s	public	key	filename	without	the
.pem	extension.

The	server	looks	in	the	ssl_client_cert_dir	or	aes.client_cert_dir	to	find	a	public
key	with	the	same	name	to	validate	the	request.

The	SSH	security	plugin	sets	the	caller	ID	to	sshkey=username	invoking	the	client.

The	server	looks	in	the	user’s	authorized_keys	file	to	find	an	SSH	public	key	to
validate	the	request.

Defining	ActionPolicy	with	Puppet
The	Puppet	module	provided	with	this	book	will	install	the	ActionPolicy	module	and
configure	it	for	you.	There	are	two	ways	to	define	policies	in	Puppet:

Create	rules	dynamically	from	Hiera	data
Distribute	static	policy	files

You	can	mix	and	match	these	two	approaches,	defining	some	policies	in	static	files	and
others	through	Hiera.

Creating	a	simple	policy	in	Hiera
Here	is	a	simple	ActionPolicy	setup	that	denies	all	other	requests	but	allows	anyone	to
run	Puppet	to	update	the	policy.	This	is	a	good	safety	net	in	case	a	mistake	is	made	in	the
configuration.

If	you	enable	authorization	but	do	not	specify	a	default	policy,	then	authorization	will	be
enabled	on	your	server	with	allow_unconfigured	enabled,	which	effectively	enables	a
default	allow	policy:

mcollective::server::authorization_enable:	true

mcollective::server::authorization_default_policy:	default_deny

mcollective::plugin::actionpolicies:

		default_deny:

				default:	'deny'

		puppet:

				default:	'deny'

				rules:

						'00	allow	puppet	to	fix	policies':

								policy	:	'allow'

								caller	:	'*'

								actions:	'runonce	runall'

								facts		:	'*'

								classes:	'*'

This	Hiera	definition	will	create	a	policy	file	named	default_deny.policy	with	a	single	line
specifying	the	default	policy	of	“deny.”	This	default	policy	will	apply	to	any	agent	for
which	a	policy	file	specific	to	the	agent	is	not	defined.

Next	it	will	create	a	policy	file	named	puppet.policy	with	two	lines:	a	default	of	deny,	and
a	second	line	that	allows	the	use	of	the	runonce	and	runall	commands.

When	done	exactly	as	specified,	the	only	requests	that	would	succeed	would	be	puppet
runonce	and	puppet	runall.	All	other	requests	will	fail,	as	shown	here:

$	mco	filemgr	--file	/etc/hosts	status

	*	[==>]	3	/	3

geode																			:	You	are	not	authorized	to	call	this	agent	or	action.

sunstone																:	You	are	not	authorized	to	call	this	agent	or	action.

heliotrope														:	You	are	not	authorized	to	call	this	agent	or	action.

Finished	processing	3	/	3	hosts	in	146.81	ms

$	mco	puppet	runonce

	*	[==>]	3	/	3

Finished	processing	3	/	3	hosts	in	662.31	ms

Allowing	more	commands

As	just	implemented,	the	policy	doesn’t	allow	us	to	accomplish	very	much.	Let’s	expand
upon	this	and	build	some	realistic	policies.

For	each	policy,	the	default	attribute	defines	the	default	policy	for	each	agent.	Any
request	for	that	agent	that	does	not	match	another	line	in	the	policy	will	be	be	allowed	or
denied,	based	on	the	value	defined	here.

Each	rule	requires	a	unique	title.	The	title	should	start	with	a	number	to	indicate	its	order
for	evaluation.	The	MCollective	module	stores	the	title	in	the	file	as	a	comment	above	the
rule	it	defines.	This	allows	you	to	read	the	created	policy	file	and	understand	it.

After	the	title,	there	is	a	dictionary	of	key/value	pairs	defining:

The	policy	action
Valid	users	or	the	key	(e.g.,	certname)	provided	by	your	authentication	plugin
The	agent	actions	that	are	allowed
Facts	that	must	match	for	the	rule	to	apply
Classes	that	must	match	for	the	rule	to	apply

Start	from	this	basis	to	create	a	distinct	policy	for	each	agent.	For	example,	this	policy
allows	most	commands	but	prevents	anyone	but	admins	from	interacting	with	files	or
disabling	the	Puppet	agent.	This	callerid	assumes	the	PSK	security	provider	with
callertype	set	to	group:

mcollective::plugin::actionpolicies:

		puppet:

				default:	allow

	 rules:

						'01	admins	can	disable	the	puppet	agent':

								policy	:	'allow'

								caller	:	'group=admins'

								actions:	'disable'

								facts		:	'*'

								classes:	'*'

						'02	nobody	else	can':

								policy	:	'deny'

								caller	:	'*'

								actions:	'disable'

								facts		:	'*'

								classes:	'*'

Here	is	another	policy	that	allows	any	developer	with	the	SSL	key	jane.doe	to	interact
with	services	on	development	boxes.	This	callerid	assumes	the	SSL	or	AES	security
provider:

		service:

				default:	deny

				rules:

						'010	developers':

								policy	:	'allow'

								caller	:	'cert=jane.doe'

								actions:	'start	stop	restart	status'

								facts		:	'hostgroup=development'

								classes:	'*'

To	allow	or	deny	all	requests	for	a	specific	agent	without	any	specific	rules,	simply	leave
out	the	rules	line.	For	example,	to	allow	anyone	to	control	packages	on	the	server:

package:

				default:	'allow'

You	can	use	the	same	approach	to	deny	all	requests	for	an	agent	when	the	global	default
would	allow	it.	For	example,	here	is	a	permissive	policy	that	allows	everything	except

shell	commands:
mcollective::server::authorization_enable:	true

mcollective::server::authorization_default_policy:	allow_everything

mcollective::plugin::actionpolicies:

		allow_everything:

				default:	'allow'

		shellcmd:

				default:	'deny'

Distributing	policy	files
If	you	are	not	using	Hiera,	the	Puppet	module	can	still	help	you	distribute	policy	files	to
the	nodes.

To	manually	configure	a	policy	for	an	agent,	create	a	policy	file	and	place	the	file	in	the
Puppet	module’s	files/policies/	directory.	You	will	find	example	policies	in	this	directory
to	guide	you.	This	directory	will	be	synchronized	to	every	node	with	the
mcollective::server	class.

Each	file	should	be	named	agentname.policy	except	for	the	default	policy,	which	can	be
named	anything	ending	with	.policy.	The	default	policy	should	be	specified	with	the
authorization_default_policy	class	or	Hiera	parameter,	like	so:

class	{	'mcollective::server':

		authorization_enable									=>	true,

		authorization_default_policy	=>	'default_deny',

}

This	specifies	that	the	default	rules	will	be	found	in	a	file	named	default_deny.policy.	If
you	enable	authorization	but	do	not	specify	a	default	policy,	then	authorization	will	be
enabled	on	your	server	with	allow_unconfigured	enabled,	which	effectively	enables	a
default	allow	policy.

The	allow_psk_root.policy_example	demonstrates	a	basic	default	policy.	It	denies
requests	from	anyone	other	than	root	on	the	client	system.	It	is	inherently	insecure,	given
that	anyone	can	be	root	on	their	own	desktop,	but	it	demonstrates	the	functionality.	There
are	several	other	example	files	included	in	the	files/policies	directory	of	the	Puppet
module.

Warning

Because	you	will	need	Puppet	to	fix	any	problems	created	by	a	new	policy,	we
recommend	that	you	include	the	first	rule	listed	in	the	files/policies/puppet.policy_example
file.	This	places	a	Puppet	policy	that	allows	any	client	to	run	Puppet	to	fix	your
authorization	setup.	Disable	this	at	your	own	risk	and	after	extensive	testing.

Defining	ActionPolicy	Manually
Download	the	ActionPolicy	agent	and	install	it	as	documented	in	“Installing	from
Source”.	Then	add	the	following	changes	to	each	server.cfg	file:

rpcauthorization	=	1

rpcauthprovider	=	action_policy

plugin.actionpolicy.allow_unconfigured	=	0

plugin.actionpolicy.enable_default	=	1

plugin.actionpolicy.default_name	=	default

Create	a	default	policy	file	and	a	policy	for	each	agent,	as	documented	at	the	plugin’s
URL.	Install	the	policy	file	in	/etc/mcollective/policies/	on	each	server.

Here	is	an	example	service	policy	file:
#	/etc/mcollective/policies/service.policy

#	Admins	can	do	anything

policy	default				deny

allow	 	cert=admin	 *	 	 				*	 	 														*

#	devs	can	do	anything	to	devel	boxes

allow	 cert=devs	 *	customer=startup	 startup::devsystems

#	devs	can	only	do	status	on	production	systems

allow	 	cert=devs	 	status	customer=startup	 *

You	can	also	create	a	distinct	policy	for	each	agent.	The	file	would	be	named
agentname.policy	and	placed	in	the	same	directory.	This	directory	must	be	synchronized
to	every	server.

If	you	enable	a	default	policy,	then	it	will	apply	to	any	agent	for	which	a	specific	policy	is
not	available.	If	you	do	not	have	a	default	policy	and	allow_unconfigured	is	enabled,
then	all	requests	for	that	agent	will	be	denied.

http://bit.ly/1rdgJf8

Auditing
At	this	point	in	the	book,	you	have	come	to	realize	that	MCollective	is	a	powerful	tool
capable	of	making	massive	changes	to	thousands	of	systems	in	seconds.	Hopefully	you’re
asking	yourself	how	to	create	logs	of	the	requests	processed	by	a	server.

You	can	of	course	write	your	own	plugin	for	auditing	requests	(which	we’ll	discuss	in
Chapter	20),	but	MCollective	includes	a	basic	audit	plugin	that	may	suit	your	needs.	This
audit	plugin	writes	out	each	request	that	the	server	receives,	and	whether	it	was	allowed	or
denied,	to	a	logfile	on	disk.

Enable	this	with	the	following	settings	in	the	server	configuration	file:
rpcaudit	=	1

rpcauditprovider	=	Logfile

plugin.rpcaudit.logfile	=	/var/log/mcollective-audit.log

Note

Unlike	the	main	MCollective	log,	this	plugin	doesn’t	do	any	rotation	of	the	logfile.	You’ll
need	to	setup	logrotate	or	something	similar	to	handle	this.

If	you	are	using	the	Puppet	module	included	with	this	book,	you	need	only	set	the
following	class	parameters	and	both	the	logfile	and	a	logrotate	script	will	be	set	up	for
you:

#	Hiera

mcollective::server::audit_logfile:	/var/log/mcollective-audit.log

#	manifests/site.pp

class	{	'mcollective::server':

		audit_logfile	=>	'/var/log/mcollective-audit.log',

}

The	value	logged	for	who	sent	the	request	differs	based	on	which	security	provider	is
enabled,	as	discussed	in	“Authorization”.	Here	are	some	examples	of	how	your	logs	might
look	with	each	of	the	security	providers	we	discussed	in	the	book	and	a	client	identity	of
geode:

securityprovider	=	psk,	psk.callertype	=	uid

[2014-02-18	08:10:25	UTC]	reqid=addb20797321590db29231f7c782b30f:	

reqtime=1392711027

caller=uid=1011@geode	agent=service	action=status	data={:process_results=>true,	

:service=>"mcollective"}

securityprovider	=	psk,	psk.callertype	=	user

[2014-02-18	08:11:26	UTC]	reqid=cc3e1168916e5678b78c70ef337afa08:	

reqtime=1392711088

caller=user=jrhett@geode	agent=service	action=status	data={:process_results=>true,	

:service=>"mcollective"}

securityprovider	=	ssl	or	aes,	public	key	file	=	jorhett.pem

[2014-02-18	08:27:37	UTC]	reqid=199d2a3cc16951bab84edba21a75fe71:	

reqtime=1392712059

caller=cert=jorhett@geode	agent=service	action=status	

data={:service=>"mcollective",	:process_results=>true}

securityprovider	=	sshkey,	username	=	jrhett

[2014-02-18	08:11:26	UTC]	reqid=cc3e1168916e5678b78c70ef337afa08:	

reqtime=1392711088

caller=user=jrhett@geode	agent=service	action=status	

data={:process_results=>true,	:service=>"mcollective"}

The	audit	log	does	not	contain	authentication	or	authorization	failures.	Those	can	only	be
gathered	from	the	DEBUG	loglevel	in	the	main	logfile	mcollective.log.

Conclusion
In	this	chapter,	we	have	discussed	the	three	types	of	security	plugins	you	may	want	to
enable	or	customize	for	your	environment:

Security	(authentication)	plugin

A	choice	of	PSK,	SSL,	AES,	or	SSHKey	security	plugins	provides	a	variety	of	ways	to
authenticate	the	requester.

Authorization	plugin

The	ActionPolicy	plugin	can	be	used	to	limit	which	requests	a	user	may	send	to	a
server.

Auditing	plugin

The	LogFile	plugin	can	be	use	to	write	details	of	every	request	processed	to	disk.

MCollective’s	plugin	architecture	provides	flexibility	to	tune	your	MCollective
environment	to	your	exact	needs.

Chapter	14.	Challenges	of	Worldwide	Parallelism
MCollective	provides	an	amazing	toolset	for	orchestrating	change	in	every	environment,
from	small	labs	all	the	way	up	to	global	enterprises	around	the	world.	I’m	familiar	with	a
company	that	manages	more	than	200	global	sites.	I’ve	assisted	a	different	company
managing	more	than	6,000	servers	in	a	central	site,	with	hundreds	more	at	remote	data
centers.	MCollective’s	ability	to	function	well	in	both	environments	is	unparalleled.	

MCollective	will	likely	work	in	any	small	environment	right	out	of	the	box.	To	make
MCollective	work	in	either	of	the	large-scale	environments	just	mentioned	required
extensive	tuning	of	the	server	and	broker	configurations.	Much	like	a	database	server,	file
server,	or	any	other	major	infrastructure	service,	you’ll	need	to	tune	it	to	operate	at	scale.

Let’s	review	some	of	the	configuration	options	you’ll	want	to	tune:

Choose	an	encryption	level	suitable	to	protect	your	middleware,	as	shown	in
“Anonymous	TLS”	and	“CA-Verified	TLS	Servers”.
Choose	a	security	plugin	that	meets	your	needs	for	authentication	and	authorization,	as
discussed	in	“How	Authentication	Works”.
Define	authorization	controls	to	restrict	access	to	specific	servers	and	agents,	as	shown
in	“Authorization”	and	Chapter	12.
Set	up	a	network	of	brokers	or	master/slave	redundancy	to	service	multiple	sites	or
high-availability	needs,	as	shown	in	“ActiveMQ	Clusters”.
Tune	the	middleware	brokers	and	servers	for	wide	area	networking,	or	density	of	scale,
as	shown	in	“Large-Scale	Broker	Configurations”	and	Chapter	12.

Soon	you’ll	find	yourself	building	your	own	custom	plugins	from	Part	III,	Chapter	21,	and
Chapter	22	to	take	advantage	of	the	global	infrastructure	you’ve	built.

A	year	from	now,	you’ll	wonder	how	you	ever	got	along	without	MCollective.

Part	III.	Custom	Plugins
In	this	part,	we	will	cover	how	to	create,	test,	and	use	custom	plugins.	The	first	thing	to	do
is	build	a	custom	agent	and	client.	As	discussed	in	Chapter	5,	the	agent	implements	server-
side	functionality	that	a	client	can	create	requests	for.		

We’ll	cover	how	to:

Provide	new,	custom	requests	you	can	make	to	your	servers
Make	MCollective	requests	from	a	script	rather	than	through	the	mco	command	line
Collect	registration	data	from	your	servers
Send	the	results	of	MCollective	requests	to	a	program,	instead	of	returning	to	your
screen

This	section	is	where	you’ll	learn	exactly	how	mutable	and	adaptable	MCollective	can	be
to	service	your	needs.

Note

I	feel	that	you	learn	much	more	by	building	the	agent	and	applications	for	yourself.
However,	if	you	are	having	difficulty,	you	can	download	the	working	code	using	the
instructions	provided	in	Chapter	24.

Chapter	15.	Building	an	Agent
In	this	chapter,	you	will	build	a	custom	agent.	You’ll	start	with	a	basic	template	useful	as	a
starting	point	for	agent	development.	Then	you’ll	add	more	functionality	and	test	it	from
the	mco	client	application.

We’ll	expand	the	basics	to	provide	additional	features	and	discuss	different	ways	to	work
with	the	MCollective	plugin	ecosystem.

After	finishing	this	chapter,	you’ll	be	able	to	take	this	agent	template	and	replace	just	a
few	lines	of	Ruby	to	build	a	different	custom	agent.

SimpleRPC	Framework
As	we	build	MCollective	clients	and	agents,	we	will	be	utilizing	a	set	of	libraries	that
comprise	the	SimpleRPC	Framework.	These	libraries	give	us	useful	tools	and	handlers	to
simplify	the	tasks	of	communicating	in	the	MCollective	ecosystem.	The	SimpleRPC
Framework	provides	conventions	and	standards	that	make	it	easy	to	work	with	plugins
provided	by	others	as	well.

The	framework	isn’t	law.	You	can	easily	peak	beneath	the	hood	using	standard	Ruby
commands.	However,	it	is	rarely	necessary,	and	everything	we	do	in	this	book	can	be	done
by	someone	with	little	Ruby	experience.

In	the	SimpleRPC	Framework,	data	is	passed	back	and	forth	in	hashes	like	so:
say_goodbye(

		:msg					=>	"So	long…",

		:sender	=>	"Dolphins"

)

There	are	a	few	simple	rules	for	passing	data	back	and	forth:

Parameters	must	always	be	in	a	hash.
Parameter	names	can	be	anything	you	want	(except	:process_results,	because	this
has	special	meaning	to	the	agent	and	client).
Parameter	values	can	be	any	type	your	authorization	plugin	(if	applicable)	understands
(e.g.,	string,	array,	hash,	Boolean,	etc.).	The	default	authorization	plugin	understands
all	Ruby	types.

Thankfully,	these	are	the	only	rules	you	must	know	up	front.	Let’s	jump	straight	in	and
build	an	agent.

Note

If	you	need	some	help	with	Ruby,	I’ve	found	the	books	Learning	Ruby	and	Ruby	Pocket
Reference,	both	by	Michael	Fitzgerald	(O’Reilly),	to	be	extremely	useful.

http://shop.oreilly.com/product/9780596529864.do
http://shop.oreilly.com/product/9780596514815.do

Start	with	a	Baseline
Let’s	create	a	baseline	agent	to	get	started	with.	If	you’re	a	Douglas	Adams	fan,	you	might
know	where	I’m	going	with	this	one.	This	is	easy	to	understand	even	if	you	haven’t	read
Hitchhiker’s	Guide	to	the	Galaxy	(spoiler	alert:	the	book	opens	with	the	dolphins	leaving
Earth):

$	mco	plugin	generate	agent	thanks	actions=say_goodbye

Created	plugin	directory	:	thanks

Created	DDL	file	:	thanks/agent/thanks.ddl

Created	Agent	file	:	thanks/agent/thanks.rb

$	cd	thanks/agent

$	$EDITOR	thanks.rb

You’ll	find	a	blank	module	in	the	Ruby	file.	Let’s	go	ahead	and	flesh	this	out	a	bit.	Enter
in	all	the	bolded	sections	in	the	following:

module	MCollective

		module	Agent

				class	Thanks<RPC::Agent

						action	"say_goodbye"	do

								validate	:person,	String

								person	=	request.data[:person]

								#	This	will	set	statuscode	and	statusmsg	fields	in	the	reply

								reply.fail	"Who	should	I	say	goodbye	to?",	1	unless	person	!=	''

								return	unless	reply.statuscode	==	0

								delicacy	=	'fish'

								format	=	"So	long	%s,	and	thanks	for	all	the	%s!\n"

								reply[:message]	=	sprintf(format,	person,	delicacy)

						end

				end

		end

end

Here	we	have	created	an	agent	with	a	single	action:	say_goodbye.

In	the	following	sections,	we’ll	go	through	each	part	of	this	code	and	discuss	what	it	does,
and	how	we	might	have	done	it	differently.

Validate	Input
The	data	from	the	client	is	always	stored	in	a	Ruby	Hash	object	accessible	from
request.data{}.	The	keys	of	the	hash	are	of	the	Ruby	type	Symbol.

As	you	saw	in	our	previous	module,	we	received	data	from	the	client.	You’ll	want	to	use
these	validators	in	your	code.	You	always	validate	your	input,	right?	Here	are	some	of	the
built-in	validators	provided	by	MCollective.	You	place	these	in	code	as	shown	here,	using
a	colon	before	the	field	name	to	provide	the	Symbol	that	is	the	key	in	the	request	object:

validate	:message,	/^[a-zA-Z]+/

validate	:message,	String

validate	:ipaddr,	:ipv4address

validate	:ipaddr,	:ipv6address

validate	:enable,	:bool

validate	:mode,	["all",	"packages"]

validate	:commmand,	:shellsafe		#	do	this	before	using	data	on	the	command	line

You	cannot	pass	other	variables,	even	Symbols,	into	these	validators.	The	code	looks
directly	at	the	request	object.	validate	can	only	be	used	to	check	input	received	in	the
request.

The	validate	call	will	throw	an	exception	if	the	test	fails.	You	should	not	put	a	rescue	to
catch	the	exception	—	the	SimpleRPC	framework	will	catch	these	and	handle	them.

You	can	create	your	own	input	validator	plugins	for	more	complex	data	types.	We	go	over
this	later	in	Chapter	20.

The	following	table	lists	the	fields	in	the	message:

Property Usage

agent This	will	always	be	your	agent’s	name

action This	will	always	be	the	method	invoked

time Timestamp	of	the	message	in	epoch	time

caller UID/GID	for	the	PSK	security	provider,	cert=TLS	Certificate	for	TLS	security	providers

reply-to Destination	response	queue.	RPC::Util	handles	this	for	you

process_results Not	for	you	to	play	with

Note

The	request	object	is	an	instance	of	MCollective::RPC::Request.	It	has	some	other
attributes,	but	these	are	not	normally	useful	when	building	your	own	agents.

Send	Replies
As	we	inherited	from	RPC::Agent	at	the	start	of	our	class,	we	are	given	a	reply	object	in
which	to	send	back	our	response.	This	object	is	an	instance	of	MCollective::RPC::Reply.

In	most	cases,	you’ll	want	to	set	reply.statuscode	to	0	for	success	or	1	for	failure,	but
there	is	a	complete	table	of	valid	response	codes	in	“Results	and	Exceptions”.

The	following	function	used	in	this	agent	set	both	the	statuscode	and	statusmsg	fields
with	a	single	function.	If	the	statuscode	was	not	success,	it	would	immediately	return
failure:

reply.fail	"Who	should	I	say	goodbye	to?",	1	unless	person	!=	''

return	unless	reply.statuscode	==	0

If	we	had	known	positively	that	the	request	had	failed,	we	could	use	the	following	variant
to	bail	immediately	and	raise	an	exception:

reply.fail!	"I	can't	find	my	towel.",	1

For	a	successful	reply,	we	want	to	set	the	statuscode	at	the	data	of	the	reply
appropriately:

		reply[:message]	=	"So	long,	and	thanks	for	all	the	fish!\n"

		reply[:statuscode]	=	0

end

Define	an	Agent	DDL
In	the	same	directory	as	your	agent	file,	you’ll	find	a	very	necessary	component,
thanks.ddl,	which	provides	the	Data	Definition	Language	for	your	plugin.	DDLs	are
required	documentation	for	RPC	systems,	as	they	document	how	the	agent	uses	input	data
and	returns	output.	The	client	application	also	uses	the	DDL	to	validate	the	input	before
submitting	the	request.

Warning

Without	a	DDL	file	installed,	neither	the	server	agent	nor	the	client	application	will
activate.

For	our	example	plugin,	we’re	going	to	use	the	following	DDL:
metadata	:name								=>	"Thanks",

									:description	=>	"Agent	to	say	thanks,	then	grab	a	towel",

									:author						=>	"Dolphins",

									:license					=>	"Taken",

									:version					=>	"1.0",

									:url									=>	"www.douglasadams.com/creations/hhgg.html",

									:timeout					=>	10				#	how	long	before	killing	off	the	request

requires	:mcollective	=>	"2.5"

action	"say_goodbye",	:description	=>	"Says	Goodbye"	do

		display	:always			#	could	be	:ok	or	:failed

		input	:person,

								:prompt						=>	"Person's	Name",

								:description	=>	"The	name	of	the	person	we	are	saying	goodbye	to.",

								:type								=>	:string,	

								#	could	be	:number,	:integer,	:float,	:list,	or	:boolean

								#:list							=>	["value1","value2"]		#	only	for	type	=	:list

								:validation		=>	'^[a-zA-Z\s]+$',					#	only	for	type	=	:string

								:maxlength			=>	20,																		#	only	for	type	=	:string

								:optional				=>	false,

								:default					=>	"Arthur"

	output	:message,

								:description	=>	"The	response",

								:display_as		=>	"Message",

								:default					=>	"So	long,	fish,	thanks!"

end

The	vast	majority	of	this	is	obvious	and	easy	to	read.	You’ll	need	to	have	an	action	block
for	each	action,	an	input	block	for	each	input	desired,	and	an	output	block	for	each	value
returned.	And	yeah,	it’s	a	lot	of	typing.	The	good	news	is	that	this	DDL	is	used	for	data
validation	by	the	client	application,	meaning	that	you	aren’t	required	to	do	simple	input
validation	in	the	client.

Both	validation	and	maxlength	are	required	when	using	type	string.

Warning

The	metadata	:name	field	is	used	by	the	package	plugin	to	name	the	package	files
generated.	The	package	plugin	will	take	every	word	in	the	DDL	Name	field	and	lowercase
and	put	dashes	between	them.	If	you	were	to	put	“My	New	Plugin”	in	this	field	and	then
package	your	plugin	with	mco	plugin	package,	the	packages	would	be	named
mcollective-my-new-plugin-agent,	mcollective-my-new-plugin-common,	and
mcollective-my-new-	plugin-client.

In	most	situations,	you	want	only	one	or	two	words	in	the	metadata	name	field.

Tip

More	information	about	the	DDL	file	can	be	found	at
http://docs.puppetlabs.com/mcollective/reference/plugins/ddl.html.

http://docs.puppetlabs.com/mcollective/reference/plugins/ddl.html

Read	Config	Files
What	if	we	wanted	the	plugin	to	get	input	from	configuration	files,	rather	than	from	the
client?

Within	the	agent,	we	could	replace	this	line	with	the	following	call:
		#	Retrieve	a	configuration	parameter

		#delicacy	=	'fish'

		delicacy	=	@config.pluginconf.fetch("thanks.delicacy",	'fish')

You	can	provide	configuration	data	to	your	plugin	by	setting	key/value	pairs	in	one	of	the
following	two	files:

#	/etc/mcollective/server.cfg

plugin.thanks.delicacy	=	Root	Beer

#	/etc/mcollective/plugin.d/thanks.cfg

delicacy	=	Peanuts

Either	of	these	files	would	provide	the	delicacy	config	option	that	the	dolphins	were
thanking	us	for.

Note

You’ll	have	to	restart	mcollectived	on	the	server	before	any	configuration	changes	are
visible.	Use	either	method	from	“Notify	mcollectived”.

You	can	make	up	key	names	to	read	from,	but	both	the	key	name	and	the	value	are	strings.
Due	to	the	way	the	files	are	parsed,	if	you	repeat	a	key	name	later	in	the	file,	the	first	value
will	be	lost.	In	my	testing,	the	plugin-specific	configuration	file	always	won	out	over	an
entry	in	the	main	server.cfg	file.

Warning

There	are	references	on	the	Puppet	Labs	website	to	a	plugins.d	directory.	This	is	a	mistype
or	obsolete.	The	correct	directory	name	is	plugin.d.

Install	Your	Agent
If	you	are	on	a	platform	supported	by	the	plugin	packager,	you	can	easily	build	a	package
containing	your	agent.	You’ll	need	your	platform’s	package	building	tools	(e.g.,	rpmbuild,
build-essential,	etc.)	installed.	You	build	the	package	with	the	mco	plugin	package
command.	

This	is	how	it	looks	on	a	RedHat	system:
$	cd	path/to/thanks

$	mco	plugin	package

Building	packages	for	mcollective-thanks	plugin.

Completed	building	all	packages	for	mcollective-thanks	plugin.

$	ls	-1	*.rpm

mcollective-thanks-1.0-1.el6.src.rpm

mcollective-thanks-1.0-1.src.rpm

mcollective-thanks-agent-1.0-1.el6.noarch.rpm

mcollective-thanks-agent-1.0-1.noarch.rpm

mcollective-thanks-common-1.0-1.el6.noarch.rpm

mcollective-thanks-common-1.0-1.noarch.rpm

If	you	are	on	a	platform	not	yet	supported	by	the	Plugin	Packager,	you’ll	need	to	follow
the	instructions	in	“Installing	from	Source”.	For	most	platforms,	running	the	following
commands	on	a	server	will	do	the	job	(adjust	for	the	location	of	server.cfg	and	libdir,	of
course):

$	cd	path/to/thanks/agent

$	grep	libdir	/etc/mcollective/server.cfg

/usr/libexec/mcollective

$	sudo	cp	-i	thanks.rb	thanks.ddl	/usr/libexec/mcollective/mcollective/agent/

$	sudo	service	mcollective	restart

Testing	the	Agent
Now	that	you	have	built	and	installed	the	agent,	you	can	invoke	the	agent	directly	from	the
mco	command	line	using	direct	RPC	calls:

$	mco	rpc	thanks	say_goodbye	--person="Jack"

Determining	the	amount	of	hosts	matching	filter	for	2	seconds….	1

	geode																										:	OK

					"So	long	Arthur,	and	thanks	for	all	the	fish!"

Tip

You’ll	notice	that	only	the	server	on	which	you	installed	the	new	agent	will	respond.	This
is	implicit	filtering	—	only	servers	that	have	a	given	agent	installed	will	process	requests
for	that	agent.

If	you	recall	the	ActiveMQ	topic	setup,	you’ll	understand	how	this	works.	Each	agent
subscribes	to	a	topic	named	collective.agentname.agent.	In	our	test,	this	would	be	the
mcollective.	thanks.agent	topic.	Only	the	servers	with	this	custom	agent	installed	will
subscribe	to	this	topic;	no	other	server	will	receive	the	request.

Now	we	should	test	that	data	validation	worked.	Our	validation	setting	only	allowed
letters	and	spaces,	no	numbers.	Let’s	see	what	happens	when	we	give	it	invalid	input:

$	mco	rpc	thanks	say_goodbye	--person="Jack0"	-I	geode

	*	[==>]	1	/	1

geode																																				Invalid	Request	Data

			Cannot	validate	input	person:	value	should	match	^[A-Za-z\s]+$

Finished	processing	1	/	1	hosts	in	85.02	ms

What	if	we	don’t	supply	a	value	at	all?
$	mco	rpc	thanks	say_goodbye	-I	geode

	*	[==>]	1	/	1

geode

				Message:	So	long	Arthur,	and	thanks	for	all	the	fish!

Finished	processing	1	/	1	hosts	in	85.02	ms

Why	did	it	accept	that?	Didn’t	we	say	that	person	was	required	input?	This	is	due	to	two
things:

We	aren’t	yet	using	an	application	to	enforce	data	input.
The	DDL	provides	a	default	value.

If	you	edit	the	DDL	and	remove	the	default	value,	you’ll	get	this	instead:
$	mco	rpc	thanks	say_goodbye	-I	geode

The	rpc	application	failed	to	run,	use	-v	for	full	error	backtrace

		details:	Action	say_goodbye	needs	a	person	argument

Chapter	16.	Extending	the	Agent
Here	we’ll	introduce	you	to	more	complex	things	you	can	do	in	your	agent.	There	isn’t	a
use	for	this	functionality	in	our	thanks	plugin	just	yet,	but	it’s	good	to	know	what	is
possible.

We’ll	give	it	the	ability	to	execute	external	scripts	or	command	lines;	how	to	send	custom
log	lines;	and	best	of	all,	we’ll	review	how	to	blow	up	tragically,	er,	I	mean	error	out
gracefully.	Of	course.

Executing	Scripts
You	can	call	any	external	script,	written	in	any	programming	language	(including	bash)
that	is	capable	of	writing	out	the	results	to	a	file	in	JSON	format:

action	"python_script"	do

		implemented_by	"/lovely/little/python/script.py"

end

The	script	will	be	given	two	types	of	input:

A	path	to	the	file	containing	the	request	data	in	JSON	format:
The	first	command-line	parameter
Environment	variable	$MCOLLECTIVE_REQUEST_FILE
A	path	to	the	file	where	the	response	should	be	written	in	JSON	format:
The	second	command-line	parameter
Environment	variable	$MCOLLECTIVE_REPLY_FILE

The	script	should	write	the	reply	as	a	JSON	hash	into	the	reply	file.	The	return	code	of
your	script	should	be	one	of	the	standard	result	codes	from	the	table	in	“Results	and
Exceptions”.

If	you	do	not	specify	a	full	path	to	the	script,	it	will	look	for	the	script	in	the	agent’s	plugin
directory.	This	makes	it	easy	to	bundle	your	scripts	in	with	your	agent	plugins:

action	"bundled_script"	do

		implemented_by	"bundled_script.py"

end

Location:

		$libdir/agent/agentname/bundled_script.py

		

Executing	Commands
MCollective	provides	a	run	function	that	makes	it	easy	to	execute	command-line	scripts
and	access	their	STDOUT	and	STDERR.	It’s	significantly	smarter	and	more	useful	than
Ruby’s	basic	system()	call	and	plays	well	with	mcollectived.	The	simplest	form	of
usage	is	to	run	a	command	and	dump	the	output	back	in	the	response:

hostinput	=	shellescape(request[:hostname])

reply[:status]	=	run(

		"grep	"	+	hostinput	+	"	/etc/hosts",

		:stdout	=>	:out,

		:stderr	=>	:err

)

return	reply

The	run	command	has	extensive	options	to	set	the	working	directory,	to	alter	the
environment,	and	to	remain	trailing	whitespace.	Shown	here	is	a	much	more	extensive
example,	which	uses	a	command	that	will	retrieve	details	from	the	local	keyStore	file
created	in	“CA-Verified	TLS	Servers”:

output	=	[]

errors	=	""

rcode	=	run(

		"sudo	keytool	-list	-keystore	keystore.jks",

		:stdout	=>	output,	:stderr	=>	errors,

		:chomp	=>	true,	:cwd	=>	"/etc/mcollective/ssl",

		:environment	=>	{"MCOLLECTIVE_SSL_PUBLIC"	=>	"/etc/mcollective/ssl"}

)

...from	here	we	can	process	the	output[]	array…

As	output	is	an	array,	each	line	of	STDOUT	will	create	a	new	member	of	the	array.	Each
line	of	STDERR	will	be	appended	to	the	string	errors.

Accessing	Facts,	Agents,	and	Classes
Your	agent	may	want	to	access	configuration	information	known	to	the	server	already.	For
example,	you	may	want	to	access	a	fact	known	to	the	server.	You	won’t	need	to	know	how
facts	are	supplied	to	mcollectived,	nor	acquire	them	yourself.	You	can	simply	access
them	in	your	current	namespace:

#	Access	the	OS	family

os_type	=	Facts['osfamily']

#	Util	library	provides	a	library	with	comparisons

#		supports:	'>=',	'>=',	'>',	'>',	'!=',	'==',	and	'=~'

if	Util.has_fact('osfamily',	'Debian',	'==')	{

		if	Util.has_fact('kernelmajversion',	'3.1',	'>=')	{

				#	do	things	appropriate	for	modern	Debian	kernels

		}

}

Likewise,	the	agents	plugin	provides	useful	helper	methods	for	determining	which	agents
are	installed:

#	I'd	like	a	list	of	all	agents

array	=	Agents.agentlist

#	These	are	the	same

if	Agents.include?("puppet")	{

if	Util.has_agent?("puppet")	{

And	finally,	you	can	use	another	Util	helper	to	find	out	if	the	Puppet	manifest	for	a	server
includes	a	class:

if	Util.has_cf_class?("webserver")	{

		#	do	spidery	things

}

Results	and	Exceptions
The	classes	and	functions	within	your	plugin	should	always	exit	with	a	response	code
listed	in	the	following	table	so	that	the	appropriate	exception	handler	can	process	the
result:

Status	code Description RPCError	exception	class

0 Success 1

Input	was	valid,	but	the	action	could	not	be	completed RPCAborted 2

Unknown	action UnknownRPCAction 3

Missing	data MissingRPCData 4

Invalid	data InvalidRPCData 5

When	calling	functions	or	classes,	you	will	receive	either	an	exception	or	a	result	code.
Here	is	a	simple	way	of	handling	an	error	from	the	agent	we	built	earlier:

mc.say_goodbye(:person	=>	"Arthur")	do	|resp,	simpleresp|

			begin

						printrpc	simpleresp

			rescue	RPCError	=>	e

						puts	"Your	request	resulted	in	error:	#{e}"

			end

end

Logging
When	you	are	debugging	issues	with	your	agent,	you	will	find	it	useful	to	have	logs	from
your	agent.	As	a	matter	of	practice,	I	sprinkle	debugging	statements	throughout	my	code
to	ease	the	discovery	process	later.	You	can	call	any	of	the	standard	logging	levels	using
the	Log	class:

Log.debug("You	passed	me	input:"	+)

Log.notice("This	value	"	+	input	+	"	isn't	valid	for	the	Goodbye	function.")

Log.fatal("I	blew	up!")

Chapter	17.	Creating	a	Client	Application
We’ve	done	a	bit	of	testing	with	the	agent,	doing	direct	RPCUtil	queries	against	it.	That’s
a	bit	long	of	a	command	isn’t	it?	And	look	at	all	that	messy	RPCUtil	output.

Why	don’t	we	build	a	proper	client	plugin	to	interface	with	our	new	agent?

Baseline	Client
Unfortunately,	there’s	no	easy	command	to	generate	a	template	for	us,	so	we’ll	just	have	to
do	this	ourselves.	This	application	will	be	thanks/application/thanks.rb.	Assuming	you	are
still	inside	the	thanks/agent/	directory	from	earlier:

$	mkdir	../application

$	cd	../application

$	$EDITOR	thanks.rb

Now	let’s	populate	the	file	like	so	(you	can	find	this	file	in	the	source	code	supplied	with
the	book):

class	MCollective::Application::Thanks<MCollective::Application

		description	"Sends	a	thanks	message."

		usage	"mco	thanks	[OPTIONS]"

		#	This	options	parser	updates	the	help	page

		option	:person,

									:description	=>	"The	person	the	dolphins	say	Goodbye	to.",

									:arguments			=>	["-p	NAME",	"--person	NAME"],

									:type								=>	String,

									:require					=>	true

		#	another	hook	where	we	could	throw	exceptions	if	the	input	isn't	valid

		def	validate_configuration(configuration)

				#	this	shouldn't	happen	since	the	option	is	mandatory	above

				raise	"Need	to	supply	a	person	to	get	a	reply."	\

						unless	configuration.include?(:person)

		end

		#	Now	we	enter	main	processing

		def	main

			client	=	rpcclient("thanks")

				printrpc	client.say_goodbye(

						:person	=>	configuration[:person],

						:options	=>	options

)

				#	Exit	using	halt	and	it	will	pass	on	the	appropriate	exit	code

				printrpcstats

				halt	client.stats

		end

end

You	may	want	to	disable	some	of	the	standard	command-line	options.	If	you	put	one	of
the	following	lines	inside	the	class,	they	will	disable	the	relevant	input	options:

			exclude_argument_sections	"rpc"														#	disables	direct	rpc	calls

			exclude_argument_sections	"common",	"filter"	#	limits	filtering	and	discovery

The	application	will	always	have	the	–help,	–verbose,	and	–config	options	no	matter
what	you	disable.

Client	Filters
Your	client	can	be	passed	filters	with	the	normal	command-line	clients,	or	it	can	define
filters	itself	based	on	other	input.	Following	are	some	examples	of	defining	filters	for	a
request	that	you	could	put	inside	the	main	block	of	the	client	code.

Servers	named	web	followed	by	a	digit:
client.identity_filter	"/web\d/"

Servers	running	Debian	Linux	or	its	derivatives	(e.g.,	Ubuntu):
client.fact_filter	"osfamily=Debian"

Servers	with	the	Puppet	class	apache	defined:
client.class_filter	/apache/

Servers	with	less	than	four	processor	cores:
client.fact_filter	"processorcount",	"4",	"<"

Reset	all	filters:
client.reset_filter

If	you	change	filters,	you	may	want	to	reset	so	that	discovery	is	re-run:
client.class_filter	/apache/

client.reset

client.fact_filter	"osfamily=Debian"

If	your	script	already	knows	which	nodes	it	wants,	you	can	disable	discovery.	This
obviously	won’t	work	in	combination	with	any	filters:

client.discover(:nodes	=>	["host1",	"host2"])

You	may	also	want	to	limit	how	many	servers	execute	the	command	or	how	many	do	it
concurrently,	without	making	the	CLI	user	specify	this.	Here’s	an	example	that	will	set
limit	the	targets	to	30%	of	those	that	match	the	filter:

client.limit_targets	=	"30%"

client.limit_method	=	:random

This	will	limit	the	targets	to	a	random	set	of	20	servers	that	match	the	filter:
client.limit_targets	=	"20"

client.limit_method	=	:first

This	will	set	batch	control	so	that	only	five	process	any	request	from	this	client	at	one
time:

client.batch_size	=	5

client.batch_sleep_time	=	5

This	will	disable	batch	control	for	a	single	request:
client	=	rpcclient("thanks")

printrpc	client.say_goodbye(:person	=>	configuration[:person],	:batch_size	=>	0)

Results	and	Exceptions
The	application	should	exit	using	the	halt	handler	like	so:

halt	client.stats

This	halt	handler	will	output	result	codes	according	to	the	following	table:

Status	code Description

0 Nodes	were	discovered	and	all	passed

0 No	discovery	was	done	but	responses	were	received

1 No	nodes	were	discovered

2 Nodes	were	discovered	but	some	responses	failed

3 Nodes	were	discovered	but	no	responses	were	received

4 No	discovery	were	done	and	no	responses	were	received

When	calling	functions	or	classes,	you	will	receive	either	an	exception	or	a	result	code.
Here	is	a	simple	way	of	handling	an	error	from	the	agent	we	built	earlier:

client.say_goodbye(:person	=>	"Arthur")	do	|resp,	simpleresp|

			begin

						printrpc	simpleresp

			rescue	RPCError	=>	e

						puts	"Your	request	resulted	in	error:	#{e}"

			end

			halt	client.stats

end

Install	Your	Client
If	you	are	on	a	platform	supported	by	the	Plugin	Packager,	you	can	easily	build	the
packages	containing	both	your	agent	and	the	client.	This	is	how	it	looks	on	a	RedHat
system:

$	cd	path/to/thanks

$	mco	plugin	package

Building	packages	for	mcollective-thanks	plugin.

Completed	building	all	packages	for	mcollective-thanks	plugin.

$	ls	-1	*.rpm

mcollective-thanks-1.0-1.src.rpm

mcollective-thanks-agent-1.0-1.noarch.rpm

mcollective-thanks-client-1.0-1.noarch.rpm

mcollective-thanks-common-1.0-1.noarch.rpm

If	you	are	on	a	platform	not	yet	supported	by	the	Plugin	Packager,	you’ll	need	to	follow
the	instructions	in	“Installing	from	Source”.	For	most	platforms,	installing	the	client
involves	running	the	following	commands	(adjust	for	the	location	of	client.cfg	and	libdir,
of	course):

$	grep	libdir

$	cd	/usr/libexec/mcollective/mcollective

$	sudo	cp	-i	/path/to/thanks/agent/thanks.ddl	agent/

$	sudo	cp	-i	/path/to/thanks/application/thanks.rb	application/

And	finally,	we	can	use	the	client	we	have	made:
$	mco	help	thanks

Sends	a	thanks	message.

Usage:	mco	thanks	[OPTIONS]

Application	Options

				-p,	--person	NAME																The	person	the	dolphins	say	Goodbye	to.

all	the	standard	options

$	mco	thanks	--person=Arthur	-I	geode

	*	[==>]	1	/	1

geode

			Message:	So	long	Arthur,	and	thanks	for	all	the	fish!

Finished	processing	1	/	1	hosts	in	60.99	ms

Chapter	18.	Processing	Multiple	Actions
In	this	chapter,	we’re	going	to	expand	our	agent	and	client	to	handle	multiple	distinct
actions.	This	adds	just	one	small	layer	on	what	you	already	know,	but	it	provides	you	great
flexibility	in	how	you	build	and	package	your	agents	going	forward.	

Recalling	what	you	learned	in	Chapter	15,	go	back	and	open	up	thanks/agent/thanks.rb	to
add	another	action.	Let’s	call	this	new	action	get_towel.	Add	it	just	after	the	very	first	end
so	it	will	remain	inside	the	Thanks	class.	You	can	put	anything	you	want	in	this	new	action
(just	remember	to	set	a	message	and	a	statuscode):

module	MCollective

		module	Agent

				class	Thanks<RPC::Agent

						action	"say_goodbye"	do

								blah	blah	blah

						end

						action	"get_towel"	do

								something	amazing

						end

				end

		end

end

Next,	we	need	to	update	the	DDL	file	to	know	about	the	new	action.	Do	yourself	a	favor
and	copy/paste	the	entire	action	block	for	say_goodbye	and	then	edit	the	title.	Change
your	input	and	output	for	whatever	amazing	thing	you’ve	done	with	the	get_towel	action:

action	"say_goodbye",	:description	=>	"Says	Goodbye"	do

		blah	blah	blah

end

action	"get_towel",	:description	=>	"Grabs	Towel"	do

		display	:always			#	could	be	:ok	or	:failed

		input	:color,

								:prompt						=>	"Which	color	towel	to	grab",

		amazing	inputs

end

That	was	all	pretty	easy,	right?	Now	let’s	get	dirty	with	the	only	nontrivial	bit	of
supporting	multiple	actions,	which	is	adding	multiaction	smarts	into	your	application.
Open	up	the	thanks/application/thanks.rb	file	and	make	the	following	changes:

1.	 Add	documentation	of	the	two	distinct	actions.
2.	 Use	a	post_option_parser	to	read	the	action	from	the	arguments.
3.	 Use	Ruby	send()	method	to	invoke	the	correct	action.

Update	the	application	file	with	the	bolded	lines	shown	here:
class	MCollective::Application::Thanks<MCollective::Application

		description	"Sends	a	thanks	message	before	grabbing	a	towel."

		usage	"mco	thanks	[ACTION]	[OPTIONS]"

		usage	"ACTION:	is	one	of	'say_goodbye'	or	'get_towel'"

		#	This	options	parser	updates	the	help	page

		option	:person,

									:description	=>	"The	person	the	dolphins	say	Goodbye	to.",

									:arguments			=>	["-p	NAME",	"--person	NAME"],

									:type								=>	String,

									:require					=>	true

		#	this	is	a	hook	called	right	after	option	parsing

		#	values	from	the	options	are	stored	in	configuration	hash

		def	post_option_parser(configuration)

				#	action	should	be	the	first	argument

				if	ARGV.length	>=	1

						configuration[:action]	=	ARGV.shift

				end

				raise	"Action	must	be	say_goodbye	or	get_towel"	\

						unless	["say_goodbye",	"get_towel"].include?(configuration[:action])

		end

		#	another	hook	where	we	could	throw	exceptions	if	the	input	isn't	valid

		def	validate_configuration(configuration)

				#	this	shouldn't	happen	since	the	option	is	mandatory	above

				raise	"Need	to	supply	a	person	to	get	a	reply."	\

						unless	configuration.include?(:person)

		end

		#	Now	we	enter	main	processing

		def	main

			client	=	rpcclient("thanks")

				printrpc	client.send(

						configuration[:action],	#	First	text	string	becomes	method	invoked…

						:person	=>	configuration[:person],

						:options	=>	options

)

				#	Exit	using	halt	and	it	will	pass	on	the	appropriate	exit	code

				printrpcstats

				halt	client.stats

		end

end

send()	is	a	special	Ruby	method	common	to	all	Ruby	objects.	It	allows	you	to	specify	the
method	to	be	called	by	placing	a	symbol	or	text	string	naming	the	method	as	the	first
parameter.	This	invokes	either	client.say_goodbye()	or	client.get_towel()	depending
on	the	value	of	configuration[:action].	I	think	you	can	see	how	easy	it	will	be	to	add	a
third	or	fourth	action.

Now	we	can	use	the	client	we	have	made:
$	mco	help	thanks

Sends	a	thanks	message	before	grabbing	a	towel.

Usage:	mco	thanks	[ACTION]	[OPTIONS]

Usage:	ACTION:	is	one	of	'say_goodbye'	or	'get_towel'

Application	Options

				-p,	--person	NAME																The	person	the	dolphins	say	Goodbye	to.

all	the	standard	options

$	mco	thanks

The	thanks	application	failed	to	run,	use	-v	for	full	error	backtrace

		details:	Action	must	be	say_goodbye	or	get_towel

$	mco	thanks	thanks	get_towel	--color=blue	-I	geode

	*	[==>]	1	/	1

geode

			Message:	I	got	the	blue	towel.	Seeya	Arthur!

Finished	processing	1	/	1	hosts	in	58.22	ms

Chapter	19.	Making	a	Standalone	Client
In	Chapter	15,	we	documented	how	to	build	an	agent	and	in	Chapter	17	how	to	build	an
application	to	extend	the	built-in	mco	command.	Although	that	is	useful	for	sending
requests	interactively	or	in	a	small	shell	script,	it	may	not	meet	your	needs	for	programatic
usage.		

Baseline	Client	Program
You	can	build	stand-alone	Ruby	scripts	that	utilize	the	same	client	libraries.	The	structure
for	these	scripts	is	very	similar,	and	you	can	use	every	option	shown	in	the	previous
sections.	Let’s	walk	you	through	an	example	here:		

#!/usr/bin/ruby

require	'mcollective'

include	MCollective::RPC

options	=	rpcoptions	do	|parser,	options|

		parser.define_head	"Script	for	the	Thanks	agent"

		parser.banner	=	"Usage:	thanks.rb	[options]	person"

		parser.on('-p',	'--person	NAME',	'Person	to	say	goodbye	to.')	do	|name|

				options[:person]	=	name

		end

end

#	This	is	probably	covered	by	the	validation	in	the	DDL

unless	options.include?(:person)

		puts("You	need	to	specify	a	person's	name	with	--person")

		exit!	1

end

#	Create	an	MCollective	client	utilizing	our	agent

client	=	rpcclient("thanks",	:options	=>	options)

#	Enable	to	see	discovery	results

#client.discover	:verbose	=>	true

#	To	disable	the	progress	indicator

#client.progress	=	false

#	Two	different	ways	to	get	results

#	1.	Simple	verbose	output

printrpc	client.say_goodbye(:person	=>	options[:person]),	:verbose	=>	true

#	2.	Format	the	output	as	you	like

#client.say_goodbye(:person	=>	options[:person]).each	do	|resp|

#							printf("%-20s:	%s\n",	resp[:sender],	resp[:data][:message])

#end

##	Three	different	ways	to	report	statistics

#	1.	Simple	one-command

printrpcstats

#	2.	More	explicit	module	methods	(same	output	as	#1)

#print	client.stats.report	+	"\n"

#	3.	Directly	access	the	RPC	results

#	read	$rubysitelib/mcollective/rpc/stats.rb	for	more	details

#print	client.stats.no_response_report	#	only	nodes	which	didn't	respond

#results	=	client.stats.to_hash								#	hash	of	statistics

#	Play	nice

client.disconnect

Running	Your	Program
By	using	the	rpcoptions	function	provided	by	the	MCollective::RPC	library,	the	program
gains	a	command-line	parser	and	help	text.

We	can	test	that	it	works	as	shown	here:
$./thanks.rb	--help

Usage:	thanks.rb	[options]	--person	NAME

Script	for	the	Thanks	agent

				-p,	--person	NAME																Name	of	the	person	to	say	goodbye	to.

$./thanks.rb	--person=Arthur

Determining	the	amount	of	hosts	matching	filter	for	2	seconds…

*	[===>]	1	/	1

geode																																			:	OK

				{:message=>"So	long	Arthur,	and	thanks	for	all	the	fish!\n"}

Finished	processing	1	/	1	hosts	in	32.13	ms

For	greater	flexibility	in	the	output	display,	try	any	of	the	normal	filters	available	to	you
with	mco	command	line:

$./thanks.rb	--person	Arthur	--target	asia

$./thanks.rb	--person	Ford	--with-fact	osfamily=Debian

$./thanks.rb	--person	Trillian	-I	heliotrope

Try	commenting	out	the	printrpc	function	and	use	the	formatted	printf	block	to	output
the	results	instead.

You	can	read	more	about	SimpleRPC	clients	at
http://docs.puppetlabs.com/mcollective/simplerpc/clients.html

http://docs.puppetlabs.com/mcollective/simplerpc/clients.html

Chapter	20.	Creating	Other	Plugins
MCollective	allows	you	to	create	plugins	to	replace	or	enhance	much	of	the	built-in
functionality.	This	chapter	covers	most	of	the	plugin	types,	where	you	can	find	examples
to	get	you	started,	and	the	subdirectory	where	you	should	place	your	newly	created
plugins.	

For	example,	if	you	are	creating	an	auditing	plugin,	you	would	take	these	steps:
$	mco	plugin	generate	agent	myagent	actions=myfunction

Created	plugin	directory	:	myagent

Created	DDL	file	:	myagent/agent/myfunction.ddl

Created	Agent	file	:	myagent/agent/myfunction.rb

$	cd	myagent

$	mkdir	audit

$	$EDITOR	audit/myaudit.rb

Table	20-1	shows	a	list	of	all	the	plugin	types,	and	which	directory	underneath	myagent/
you	should	put	the	file	you	create.	We	already	discussed	the	first	two	(agent	and
application)	in	Chapter	5.

Table	20-1.	MCollective	plugin	types
Plugin	type Documentation Subdirectory

Server	agent http://docs.puppetlabs.com/mcollective/simplerpc/agents.html agent

Client http://docs.puppetlabs.com/mcollective/reference/plugins/application.html application

Data	plugin http://docs.puppetlabs.com/mcollective/reference/plugins/data.html data

Fact	plugin http://docs.puppetlabs.com/mcollective/reference/plugins/facts.html facts

Auditing http://docs.puppetlabs.com/mcollective/simplerpc/auditing.html audit

Validator http://docs.puppetlabs.com/mcollective/reference/plugins/validator.html validator

Discovery http://docs.puppetlabs.com/mcollective/reference/plugins/discovery.html discovery

Connector http://docs.puppetlabs.com/mcollective/simplerpc/authorization.html connector

Registration http://docs.puppetlabs.com/mcollective/reference/plugins/registration.html registration

Aggregate http://docs.puppetlabs.com/mcollective/reference/plugins/aggregate.html aggregate

Authorization http://docs.puppetlabs.com/mcollective/simplerpc/authorization.html util

Security http://docs.puppetlabs.com/mcollective/reference/basic/messageformat.html security

Util A	place	to	put	shared	code	to	be	used	by	other	modules util

http://docs.puppetlabs.com/mcollective/simplerpc/agents.html
http://docs.puppetlabs.com/mcollective/reference/plugins/application.html
http://docs.puppetlabs.com/mcollective/reference/plugins/data.html
http://docs.puppetlabs.com/mcollective/reference/plugins/facts.html
http://docs.puppetlabs.com/mcollective/simplerpc/auditing.html
http://docs.puppetlabs.com/mcollective/reference/plugins/validator.html
http://docs.puppetlabs.com/mcollective/reference/plugins/discovery.html
http://docs.puppetlabs.com/mcollective/simplerpc/authorization.html
http://docs.puppetlabs.com/mcollective/reference/plugins/registration.html
http://docs.puppetlabs.com/mcollective/reference/plugins/aggregate.html
http://docs.puppetlabs.com/mcollective/simplerpc/authorization.html
http://docs.puppetlabs.com/mcollective/reference/basic/messageformat.html

Authorization	Plugins
Notice	that	authorization	plugins	don’t	have	their	own	directory.	As	they	are	shared	by
many	applications,	they	should	be	installed	in	the	util	directory.9

Because	of	the	special	directory	needs,	mco	plugin	package	will	not	build	packages	for
authorization	plugins.		

Facts	Plugins
If	you	create	a	facts	plugin,	it	should	be	named	myagent_facts.	After	installing	it	on	the
server,	alter	the	server	configuration	param	factsource	to	the	name	of	your	fact	plugin	in
lowercase	with	the	_facts	suffix	trimmed	off:

factsource	=	myagent

fact_cache_time	=	300

The	fact_cache_time	parameter	allows	you	to	tune	how	often	the	facts	are	retrieved	from
the	plugin.	If	the	cost	of	retrieving	the	facts	is	high,	you	may	want	to	tune	this
considerably	higher.	Tuning	this	lower	than	five	minutes	is	not	generally	recommended.
9	Puppet	bug	MCO-86	proposes	to	give	them	their	own	directory.

https://tickets.puppetlabs.com/browse/MCO-86

Chapter	21.	Processing	Registration	Data
Registration	is	a	process	where	an	agent	on	the	server	sends	out	a	message	on	to	the
collective.registration.agent	topic	every	registerinterval	period.	The	default
registration	agent	AgentList	sends	out	a	list	of	the	MCollective	agents	installed	and
running	in	mcollectived.

In	a	default	installation,	every	server	publishes	these	registration	messages,	but	no	listener
subscribes	to	them.	I	believe	the	original	use	was	intended	to	simply	keep	the	TCP
connection	alive	in	the	presence	of	connection-tracking	firewalls.	Now	that	this	is	handled
by	the	heartbeat	support	in	STOMP	1.1+	protocol,	registration	…	well,	it	has	found	its
own	reason	to	live.

Many	people	have	started	doing	useful	things	with	the	registration	agent.	Let’s	show	you
how	to	build	your	own	agent	and	your	own	collector	to	grab	that	data	and	do	something
with	it.

Registration	Agent
If	you	were	to	look	at	the	default	registration	agent	in	your	libdir	directory,	you’d	be
amazed	at	how	simple	it	is:	

$	cat	/usr/libexec/mcollective/mcollective/registration/agentlist.rb

module	MCollective

		module	Registration

				#	A	registration	plugin	that	simply	sends	in	the	list	of	agents	we	have

				class	Agentlist<Base

						def	body

								Agents.agentlist

						end

				end

		end

end

Yeah,	it	is	simple.	The	module	should	subclass	MCollective::Registration::Base.
Define	a	body	method	which	returns	anything	you	want,	and	that	data	is	sent	out	to	the
collective.registration.agent	topic	for	you.	You	can	make	the	data	as	complex	or	as
simple	as	meets	your	needs.	Remember	that	by	default,	nothing	reads	what	this	agent
publishes.

If	you	send	the	value	nil,	then	no	message	will	be	sent	out.

R.I.	Pienaar	wrote	a	registration	plugin	that	supplies	not	just	the	installed	agents,	but	also
the	identity,	facts,	collectives,	and	Puppet	classes.	You	can	find	that	at
https://github.com/puppetlabs/mcollective-plugins/blob/master/registration/meta.rb.

At	one	site	where	we	wanted	to	reduce	the	registration	traffic,	we	added	a	registration
agent	that	only	sent	the	hostname:

$	cat	/usr/libexec/mcollective/mcollective/registration/hostname.rb

module	MCollective

		module	Registration

				#	A	registration	plugin	that	simply	sends	the	hostname

				class	Hostname<Base

						require	'socket'

						def	body

								Socket.gethostname

						end

				end

		end

end

Then	we	changed	the	server	configuration	to	only	send	the	registration	data	every	hour:
registerinterval	=	3600

registration	=	Hostname

registration_collective	=	mcollective

Notice	the	registration_collective	parameter	there.	We	haven’t	talked	about	this
before	now.	If	you	have	localized	traffic,	as	we	have	suggested	in	“Localizing	Traffic”,
you	may	want	to	put	registration	traffic	on	either	its	own	collective	or	on	a	global
collective	distinct	from	what	your	primary	collective	is	set	to.	It	depends	on	what	your
needs	are	and	where	your	listeners	are	expecting	to	receive	this	information.

https://github.com/puppetlabs/mcollective-plugins/blob/master/registration/meta.rb

Registration	Collector
Collecting	responses	is	nothing	more	than	listening	to	registration	information	published
on	the	collectivename.registration.agent	topic.	Better	yet,	you	don’t	have	to	know	how
to	write	a	topic	subscriber	in	Ruby.	Simply	create	an	MCollective	agent	named
registration.	Store	the	registration	collector	in	the	file
libdir/mcollective/agent/registration.rb.	Here	is	a	simple	registration	agent	that	logs	the
sender	and	the	time	that	the	sender	sent	the	message:	

$	cat	/usr/libexec/mcollective/mcollective/registration/registration.rb

module	MCollective

		module	Agent

				class	Registration

						attr_reader	:timeout,	:meta

						require	'time'

						def	initialize

						@timeout	=	1

						@config	=	Config.instance

						@meta	=	{:license	=>	"GPLv2",

									:author	=>	"Jo	Rhett	<jrhett@netconsonance.com>",

									:url	=>	"http://shop.oreilly.com/product/0636920032472.do"}

						end

						def	handlemsg(message,	connection)

								remotetime	=	Time.at(message[:msgtime])

								Log.info("server	"	+	message[:senderid]	\

														+	"	sent	registration	with	timestamp	"	+	remotetime.to_s)

								return	nil

						end

						def	help

								<<-END

LogOnly	Registration	Agent

==========================

A	simple	registration	agent	that	writes	out	one	log	line	for	each	server

that	it	receives	a	registration	message	from.

END

						end

				end

		end

end

How	can	you	tell	if	your	agent	is	running?	Check	the	debug	logs.	If	the	agent	has	a	syntax
error,	you	might	get	an	error:

E,	[2014-02-26T02:37:06.633580	#18327]	ERROR—:	pluginmanager.rb:171:in

		`loadclass'	Failed	to	load	MCollective::Agent::Registration:

		/usr/libexec/mcollective/mcollective/agent/registration.rb:19:	syntax	error,

		unexpected	')',	expecting	']'

E,	[2014-02-26T02:37:06.633680	#18327]	ERROR—:	agents.rb:71:in	`loadagent'

		Loading	agent	registration	failed:	/usr/libexec/mcollective/mcollective/agent

		/registration.rb:19:	syntax	error,	unexpected	')',	expecting	']'

But	in	most	circumstances,	all	the	information	is	at	Debug	level	only:
D,	[2014-02-26T02:03:40.338394	#14902]	DEBUG—:	agents.rb:104:in	`findagentfile'

Found	registration	at	/usr/libexec/mcollective/mcollective/agent/registration.rb

D,	[2014-02-26T02:03:40.338512	#14902]	DEBUG—:	pluginmanager.rb:167:in	

`loadclass'	Loading	MCollective::Agent::Registration	from	mcollective/agent/

registration.rb	D,	[2014-02-26T02:03:40.338809	#14902]	DEBUG—:	agents.rb:91:in	

`activate_agent?'	MCollective::Agent::Registration	does	not	have	an	activate?

method,	activating	as	default	D,	[2014-02-26T02:03:40.338915	#14902]	DEBUG—:	

pluginmanager.rb:44:in	`<<'	Registering	plugin	registration_agent	with	class	

MCollective::Agent::Registration	single_instance:	true	D,	[2014-02-26T02:03:40.	

339014#14902]	DEBUG—:	pluginmanager.rb:80:in	`[]'	Returning	new	plugin

registration_agent	with	class	MCollective::Agent::Registration	D,	

[2014-02-26T02:03:40.339281	#14902]	DEBUG—:	activemq.rb:373:in	`subscribe'

Subscribing	to	/topic/mcollective.registration.agent	with	headers	{}

If	you	are	using	the	plugin	shown	earlier,	you’ll	have	messages	like	this	in	your	logs:
I,	[2014-02-26T02:39:03.832903	#18421]		INFO—:	registration.rb:20:in	

`handlemsg'	server	geode	sent	us	registration	with	timestamp	Wed	Feb	26	

02:39:03	-0800	2014	I,	[2014-02-26T02:39:21.333663	#18421]		INFO—:	

registration.rb:20:in	`handlemsg'	server	sunstone	sent	us	registration	with

timestamp	Wed	Feb	26	02:39:21	-0800	2014

Note

As	your	registration	listener	must	be	named	Registration,	you	can	only	have	one	per
system.	However,	as	servers	send	their	registration	messages	to	a	topic	and	not	a	queue,
you	can	have	multiple	registration	listeners	in	your	collective.

One	listener	might	update	a	database,	for	example,	while	a	different	listener	populates	a
Memcache	or	Solr	array.	As	there	can	be	significant	amounts	of	registration	traffic,	it	is
best	to	keep	each	registration	listener	small	and	fast.

Registration	and	SSL	Security
If	you	are	using	SSL	or	AES	security	plugins,	you	may	have	a	problem	collecting
registration	data.	The	registration	messages	will	be	encoded	with	the	server’s	private	key.
mcollectived	won’t	accept	the	messages	because	they	will	fail	validation:

W,	[2014-02-26T02:17:14.203519	#15732]		WARN—:	aes_security.rb:119:in	

`decodemsg'	Could	not	decrypt	message	from	client:	RuntimeError:	Could	not	find	

key	/etc/mcollective/ssl/clients/heliotrope.example.net.pem

W,	[2014-02-26T02:17:14.203645	#15732]		WARN—:	runner.rb:78:in	`run'	Failed	

to	handle	message:	Could	not	decrypt	message	-	

MCollective::SecurityValidationFailed

What	this	means	is	that	in	addition	to	synchronizing	every	valid	client’s	public	key	out	to
each	server,	you	will	also	need	to	synchronize	every	server’s	public	key	into	the
/etc/mcollective/ssl/clients	directory	on	the	server	listening	for	registration	data.

If	you	are	using	the	Puppet	module	provided	with	this	book,	you	can	put	the	collection	of
server	keys	into	the	${modulepath}/mcollective/files/ssl/clients	directory	and	they	will	be
synchronized	to	every	host.	However,	the	method	of	collecting	all	the	server	keys	is	left	as
an	exercise	for	the	reader.

Chapter	22.	Collecting	Responses
One	of	the	features	that	makes	MCollective	truly	unique	is	the	ability	to	send	requests
from	one	client	and	to	process	the	responses	with	a	different	client	or	listener,	as	shown	in
Figure	22-1.

Figure	22-1.	A	separate	listener	to	process	results	from	requests

Create	a	Listener
The	first	thing	we’ll	do	here	is	to	create	a	listener.	What	I’ll	introduce	to	you	here	is	a
working	listener	from	which	you	can	debug	any	problem.	You	can	also	copy	it	and	add
new	functionality.	I	put	my	listeners	in	the	$libdir	directory	just	like	every	other	plugin,
but	that’s	not	required:

$	cat	/usr/libexec/mcollective/mcollective/listener/debugger.rb

#	Parse	options,	load	config,	and	start	an	MCollective	client.

require	'mcollective'

optparser	=	MCollective::Optionparser.new

options	=	optparser.parse

config	=	MCollective::Config.instance

config.loadconfig(options[:config])

MCollective::PluginManager["security_plugin"].initiated_by	=	:client

connector	=	MCollective::PluginManager['connector_plugin']

connector.connect

#	Get	pretty-print	and	the	Log	object

require	'pp'

Log	=	MCollective::Log

#	Get	a	reply	queue	name	from	command	line,	default	to	"debugger"

replyqueue	=	ARGV[0]	||	'debugger'

queuename	=	'/queue/mcollective.reply.'	+	replyqueue

#	Subscribe	to	the	queue

connector.connection.subscribe(queuename,	{},	"$$".to_i)

#	consume	all	the	items	in	the	queue…

loop	do

		#	Get	an	mcollective	Message	object	and	configure	it	as	a	reply

		message	=	connector.receive

		message.type	=	:reply

		message.decode!										#	security	plugin	validates	authentication

		#	This	is	the	real	data,	everything	else	is	envelope

		data	=	message.payload[:body][:data]

		#	Debug	output	showing	the	data	received

		pp	data[:text]

end

Submit	reply-to
Now	that	we	have	a	listener	to	process	the	output,	let’s	send	some	requests	to	place
responses	in	the	queue:

$	mco	rpc	--agent	service	--action	status	--argument	service=puppet	\

	--reply-to=/queue/mcollective.reply.debugger

Request	sent	with	id:	12afa18ae2105390a73302967edddab8	replies	to	

/queue/mcollective.reply.debugger

Warning

Most	applications	do	not	provide	the	reply-to	functionality.	You	must	use	the	RPC
invocation	of	the	agent	to	get	this	useful	response	back	from	the	application.10

Using	a	client	application	with	the	--reply-to	option	often	produces	the	following	error
message:

$	mco	puppet	status	--reply-to	/queue/mcollective.reply.debugger

The	mco	application	failed	to	run,	use	-v	for	full	error	backtrace	details:	

undefined	method	`length'	for	nil:NilClass

$	mco	ping	--reply-to	/queue/mcollective.reply.debugger

----	ping	statistics	----

No	responses	received

You’ll	notice	that	ping	claims	no	responses.	That’s	because	it’s	a	simple	application,	and
you	didn’t	realize	you	sent	the	result	elsewhere.	Ping	also	has	a	different	response	format,
which	we	will	discuss	in	the	next	section.

Both	of	those	commands	will	work	—	you’ll	receive	the	results	on	your	response	queue.
But	mco	will	produce	the	error	message	and	return	a	failure	response	code.	To	receive	back
your	request	ID	as	shown	earlier,	you	must	invoke	the	agent	using	the	direct	RPC	method
as	shown	at	the	top.

Another	way	to	submit	reply-to	requests	is	directly	from	a	standalone	Ruby	program.	In
your	program,	add	the	following	line	to	have	the	results	sent	to	a	reply	queue	rather	than
being	processed	in	your	application.	To	refer	back	to	the	example	we	created	in	the
previous	section,	you	would	add	the	following	lines:

#	Create	an	MCollective	client	utilizing	our	agent

client	=	rpcclient("thanks",	:options	=>	options)

#	Optionally	send	results	to	a	reply	queue

if	options.include?(:reply_to)

		client.reply_to	=	options[:reply_to]

end

Warning

The	standard	command-line	option	is	--reply-to,	but	the	option	is	stored	in	reply_to.

When	reply_to	is	set,	the	application	won’t	receive	any	data	back	from	the	client
invocation.	You’ll	want	to	modify	the	program	to	deal	with	that	scenario,	too:

#	we	don't	get	any	data	back	if	results	go	to	a	queue

if	options.include?(:reply_to)

		client.say_goodbye(:person	=>	options[:person])

else

		#	Format	the	output

		client.say_goodbye(:person	=>	options[:person]).each	do	|resp|

				printf("%-10s:	%s\n",	resp[:sender],	resp[:data][:message])

		end

end

Process	Responses
Let’s	look	at	the	results	we	receive.	We’re	expecting	the	hostname,	agent,	statusmessage,
and	a	pretty-print	output	of	the	body:

$	ruby	debugger.rb

geode/service:	OK=0

{:status=>"running"}

sunstone/service:	OK=0

{:status=>"running"}

heliotrope/service:	OK=0

{:status=>"running"}

Yup,	that’s	exactly	what	we	got.	Now	what	about	if	we	send	it	ping	status?	Ping	is	a
minimal	test	that	doesn’t	include	status	messages.	That’s	the	bottom	part	of	the	if/then	in
the	previous	code	block.	For	this	situation,	output	only	the	hostname	and	the	body	text:

$	ruby	debugger.rb

ruby	listen.rb

geode:	"pong"

fireagate:	"pong"

heliotrope:	"pong"

sunstone:	"pong"

How	about	if	we	do	something	with	more	data	in	the	fields,	like	mco	puppet	status?
geode/puppet:	OK=0

{:daemon_present=>true,

	:status=>"idling",

	:enabled=>true,

	:message=>"Currently	idling;	last	completed	run	26	minutes	23	seconds	ago",

	:idling=>true,

	:applying=>false,

	:lastrun=>1393571918,

	:disable_message=>"",

	:since_lastrun=>1583}

heliotrope/puppet:	OK=0

...etc

As	you	can	see,	there	are	considerably	more	fields	available	to	use	in	your	output.

What	if	you	want	to	see	all	the	gory	details?	You	might	want	to	try	adding	one	of	the
follow	pretty-print	commands.	Each	one	of	these	is	a	little	further	inside	the	reply
message,	so	you	only	need	one	of	them.	Looking	at	this	output	is	an	exercise	for	the
reader:	you’ll	get	to	see	a	lot	more	of	how	a	reply	message	is	structured:

#	Only	use	one	of	these,	as	each	includes	the	ones	beneath	it.

		#	All	the	gory	details

		#pp	message

		#	Everything	we	care	about	is	here

		#pp	message.payload

		#	This	contains	just	the	data	in	the	response

		pp	message.payload[:body]

How	might	you	use	this	data?	There’s	no	limit,	really.	Anything	you	can	do	in	Ruby.
Here’s	a	short	list:

Store	it	in	NoSQL	like	Memcache,	Mongo,	or	Hadoop.
Store	it	in	a	database	(better	keep	that	connection	open	for	speed).
Store	it	in	a	file.
Submit	it	to	another	system	using	a	REST	API.

I	think	you	get	the	idea.	Even	the	sky	is	not	the	limit	—	I	hear	that	most	satellites	support
RESTful	APIs	these	days.

10	Improvement	request	filed	at	Puppet	Labs	BUG	MCO-207	for	generalized	support	of
this	feature.

https://tickets.puppetlabs.com/browse/MCO-207

Chapter	23.	Running	MCollective	Without	Root
It	is	possible	and	even	recommended	to	run	the	MCollective	server	as	a	normal	user
account.	The	init	script	installed	with	the	package	can’t	handle	this	scenario,	and	some
agents	won’t	be	able	to	complete	some	actions	without	root	privileges.	However,	if	you
have	a	custom	agent	that	manages	an	application	running	under	a	different	user	ID,	this	is
the	best	way	to	ensure	all	actions	are	taken	as	the	appropriate	user.

Creating	a	user-specific	MCollective	server	is	as	easy	as	this:
$	cp	/etc/mcollective/server.cfg	~/.mcollective.d/server.cfg

$	echo	"identify	=	special-application"	>>	~/.mcollective.d/server.cfg

$	sed	-i	-e	"s/var\/log/homedir\/.mcollective.d/"	~/.mcollective.d/server.cfg

$	/usr/sbin/mcollectived	--pid=~/.mcollective.d/pid	\

		--config=~/.mcollective.d/server.cfg

This	mcollectived	server	will	run	without	difficulties	on	the	same	node	as	the	central
server	running	as	root.	You	can	safely	run	dozens	or	even	hundreds	of	non-root
mcollectived	servers	on	the	same	node.

Obviously	this	example	does	not	handle	every	possible	scenario:

You’ll	need	to	create	a	startup	script	for	this	user-specific	invocation.
You	may	need	to	edit	the	configuration	file	to	point	at	user-specific	SSL	keys	used	for
authentication	(depending	on	which	security	provider	you	are	configured	to	use).

I	believe	this	is	the	easiest	way	to	limit	user	control	to	actions	appropriate	for	an	account
and	to	ensure	that	all	actions	are	running	under	the	appropriate	user	rights.	I	use	nonroot
MCollective	daemons	whenever	possible.

Chapter	24.	Downloading	the	Code
In	my	experience,	you	learn	much	more	by	building	the	agent	and	applications	for
yourself.	However,	if	you	are	having	difficulty,	you	can	download	the	fully	working	code
for	all	of	my	examples	from	the	GitHub	repo	for	the	book,	at	the	Learning	MCollective
book	reference	repository.

You	can	find	the	thanks	agent	and	application	at	https://github.com/jorhett/learning-
mcollective/tree/master/examples/thanks.

You	can	find	the	registration	agent	and	processor	at	https://github.com/jorhett/learning-
mcollective/tree/master/examples/registration.

You	can	find	the	debugger	response	collector	at	https://github.com/jorhett/learning-
mcollective/tree/master/examples/listen.

The	code	here	is	in	production	use	at	a	number	of	sites.	If	you	find	any	problems,	create
an	issue	in	the	Github	repository	with	details	of	your	concern.

https://github.com/jorhett/learning-mcollective
https://github.com/jorhett/learning-mcollective/tree/master/examples/thanks
https://github.com/jorhett/learning-mcollective/tree/master/examples/registration
https://github.com/jorhett/learning-mcollective/tree/master/examples/listen

Part	IV.	Putting	It	All	Together
At	this	point,	you	have	learned	about	every	technical	aspect	of	MCollective.	In	Part	I,	you
did	the	following:

Built	a	working	installation	of	MCollective	you	can	learn	from.
Installed	agent	plugins	to	provide	functionality	in	the	MCollective	servers.
Used	the	mco	client	application	to	issue	requests	to	the	agents.
Took	control	of	the	Puppet	agent	using	the	runonce	and	runall	requests.

In	Part	II,	you	learned	to	do	the	following:

Tune	parameters	on	ActiveMQ,	which	can	benefit	an	MCollective	installation.
Use	TLS	to	encrypt	communications	between	the	nodes	and	the	broker.
Ensure	the	validity	of	requests	using	strong	cryptography	to	prevent	tampering.
Limit	the	requests	which	a	client	can	make	to	specific	servers	or	agents.

In	Part	III,	you	built	the	following:

A	server	agent	to	say	“thanks”	and	“goodbye”	based	on	configurable	options.
A	client	application	to	extend	the	mco	command	to	speak	with	your	agent.
A	standalone	Ruby	script	to	utilize	the	agent.
A	registration	agent	to	supply	custom	details	in	the	registration	messages.
A	debugging	tool	to	listen	on	reply	queues	and	display	the	information	received.

Chapter	25.	Use	Best	Practices
In	the	final	chapter	of	the	book,	I’m	going	to	share	some	thoughts	and	recommendations
for	how	to	make	the	best	use	of	MCollective.

Make	Use	of	Configuration	Management
It	is	certainly	possible	to	use	MCollective	to	maintain	the	configuration	of	software.	I	have
used	MCollective	to	distribute	configuration	files	for	MCollective	servers.	However,	I
prefer	to	use	tools	for	what	they	are	best	at.

Configuration	management	is	best	done	by	tools	focused	on	ensuring	consistency	across
nodes.	Configuration-management	agents	like	Puppet,	Chef,	and	others	are	well	suited	for
this	effort.	You	express	the	desired	state	of	the	system	through	the	configuration
management	tool	of	your	choice,	and	it	will	ensure	that	all	nodes	are	synced.	In	particular,
Puppet	has	modules	and	Chef	has	cookbooks	intended	to	manage	the	MCollective
configuration	on	nodes.

MCollective	is	best	used	for	requests	to	gather	information	or	make	a	change
simultaneously	on	tens,	hundreds,	or	thousands	of	nodes.	None	of	the	configuration-
management	systems11	are	designed	to	make	thousands	of	servers	process	a	simple
request	in	a	few	seconds.

It	requires	a	lot	of	coding	to	make	MCollective	agents	that	can	effectively	manage
configurations.	Likewise,	you’ll	find	it	difficult	to	use	configuration	management	to
orchestrate	fast	action	across	many	systems.	MCollective	and	configuration	management
are	two	different	tools	that	extend	and	enhance	each	other’s	abilities.

Use	each	tool	for	what	it	is	best	at.

Use	Puppet,	Chef,	or	another	configuration	management	tool	to	maintain	the	MCollective
configuration.	You	can	fix	a	broken	MCollective	server	with	configuration	management,
and	you	can	fix	a	broken	configuration	management	agent	with	MCollective	—	two	great
things	that	play	well	together.

Choose	the	Best	Discovery	Method
The	most	common	complaint	of	people	who	claim	that	MCollective	won’t	meet	their
needs	concerns	the	use	of	a	broadcast	mechanism	for	discovery.	Indeed,	the	oldest
versions	of	MCollective	only	supported	the	mc	broadcast	discovery	method.	If	a	server
was	offline	when	a	request	was	issued,	it	wouldn’t	respond	to	discovery	and	thus	wouldn’t
handle	the	request.	

MCollective	has	long	since	grown	to	include	discovery	plugins	that	allow	correlation	of	a
wide	variety	of	data.	There	are	plugins	to	filter	the	list	of	servers	from	flat	files,
PuppetDB,	Chef,	Foreman,	MongoDB,	RiakDB,	and	Elastic	Search.	I’m	sure	there	are
even	more	I	haven’t	found	or	that	were	created	after	this	book	was	written.

There	is	a	special	message	about	discovery	plugins	that	I’d	like	to	call	attention	to:	use	the
discovery	plugin	appropriate	for	your	request.

You	must	use	the	same	connector	and	the	same	security	plugin	on	all	nodes	in	your
collective.	However,	you	can	use	a	different	discovery	plugin	for	each	request.	Choose	the
discovery	plugin	most	appropriate	to	the	request	you	are	making.

For	a	simple	example,	in	most	cases	I	want	requests	to	be	processed	only	by	nodes	that	are
online	and	functional.	If	I	want	all	nodes	in	the	San	Francisco	cluster	to	restart	Apache,
I’m	not	worried	about	nodes	that	are	currently	offline.	I	will	use	the	mc	(default)	discovery
plugin	to	handle	this	request:

$	mco	service	httpd	restart	--with-class	apache	--target	sf

However,	if	I	want	to	shut	down	Apache	on	every	node	in	that	cluster,	I’d	want	to	ensure
that	any	node	that	was	offline	got	the	message	as	soon	as	it	came	online.	I’d	use	a
command	like	this,	which	sends	the	request	to	all	known	servers	and	uses	a	really	long
timeout:

$	mco	service	httpd	stop	--dm	flatfile	--do	sfweb.txt	--ttl	3600	--timeout	3610

If	necessary,	I’d	use	a	wrapper	to	rerun	the	command	with	a	new	list	containing	only	the
nodes	that	didn’t	respond.

You	can	find	a	list	of	discovery	plugins	by	running	a	GitHub	search	for	“mcollective
discovery”.

https://github.com/search?q=mcollective+discovery&ref=cmdform

Authorize	and	Audit	Each	Request
Security	of	your	MCollective	deployment	depends	on	the	tri-part	combination	of	your
security	(authentication),	authorization,	and	auditing	plugins.	Each	of	them	provides	a
necessary	function:	

Choose	the	middleware	security	model	that	best	protects	your	resources.	Always
encrypt	if	you	transit	any	untrusted	networks.	If	you	already	use	Puppet,	you	can
enable	TLS	encryption	with	trivial	configuration	changes	on	managed	nodes.
The	security	(authentication)	plugin	provides	validated	caller	information	to	the
authorization	and	auditing	plugins.	A	poor	choice	of	authentication	mechanisms	will
reinforce	the	well-known	garbage	in,	garbage	out	phenomenon.
Make	use	of	the	granular	access	control	provided	by	the	SSL,	AES,	and	SSHKey
security	plugins.	Each	of	these	plugins	use	public	keys	to	cryptographically	validate	the
identity	of	the	caller.
Don’t	stop	at	strong	authentication.	It	is	senseless	to	use	strong	authentication	if	you
don’t	authorize	each	request.	This	is	akin	to	checking	someone’s	ID	card,	then	handing
them	your	wallet	to	do	with	as	they	please.
It	is	better	to	have	an	explicit	“allow	any”	rule	in	the	authorization	logic	than	to	have
none	at	all.	It	will	be	easier	to	adjust	this	rule	when	the	time	comes	than	it	will	be	to
perform	a	new	installation	of	authorization	rules.
Always	audit	MCollective	requests.	Ensure	that	the	audit	data	is	backed	up	in	the	same
secure	manner	that	you	store	the	authentication	and	sudo	logs	for	nodes.
As	security	is	provided	by	plugins,	each	organization	or	even	each	collective	of	hosts
can	use	a	different	security	model	that	meets	its	needs.

MCollective’s	plugin	architecture	for	security	provides	considerable	flexibility	in
implementation.	There	is	no	singular	right	way	to	do	security	for	MCollective;	instead,
you	are	provided	with	tools	to	make	security	work	exactly	as	you	need.

You	can	find	detailed	instructions	for	improving	MCollective	security	in	Chapter	11	and
Chapter	13.
11	Some	configuration	management	plugins	can	provide	orchestration	functionality	on	a
limited	basis.

Chapter	26.	Grow	Your	Deployment
Immediately	available	from	our	installation	of	the	stock	Puppet	Labs	plugins,	you	can
query	and	make	changes	to	files,	packages,	services,	and	configuration-management
daemons.	You’ll	be	able	to	find	hundreds	of	useful	plugins	at	GitHub,	too.	However,	most
of	my	clients	found	the	real	value	in	building	plugins	that	implemented	a	feature	specific
to	their	environment.

There	are	numerous	ways	to	use	MCollective	that	you	may	not	be	aware	of	yet.	After
some	growth,	you	may	find	ways	of	using	MCollective	that	nobody	has	thought	of.	Take
time	to	consider	the	possibilities.

Consider	the	Strings	Analogy
The	marionette	metaphor	can	be	a	useful	spark	for	creative	thought.	Consider	which
aspects	of	your	environment	you	really	wish	you	had	a	string	attached	to.	What	do	you
want	it	to	pull?	Are	you	pulling	it	with	a	stick	in	your	hand	or	something	more	complex?
Does	a	Puppet	pull	to	notify	you	of	something?

Ask	yourself	questions	of	this	nature:

Where	do	you	want	a	control	knob?	Where	would	you	attach	a	string?

This	is	an	ideal	situation	for	building	a	custom	agent	that	can	turn	that	knob	or	raise	that
lever.	Refer	to	Chapter	15.

Of	what	would	you	like	to	have	more	information?	What	can	you	feel	from	the	strings?

This	is	an	ideal	situation	for	building	a	custom	agent	that	you	can	query	on	request.	Or
perhaps	you	should	create	a	registration	plugin	that	supplies	the	information
periodically	and	a	listener	to	collect	and	process	that	information.	Find	more
information	in	Chapter	21.

Do	you	use	a	dashboard	to	issue	requests?	To	what	are	the	strings	attached?

You	can	issue	client	commands	from	any	application.	Executing	a	Ruby	script	that
includes	the	MCollective::RPC	library	client	is	the	easy	way,	but	anything	that	can
issue	a	properly	formatted	request	to	the	middleware	broker	can	be	a	client.	Check	out
Chapter	19.

Do	you	need	to	receive	information	when	events	occur?	Does	the	Puppet	pull	on	the
strings?

An	MCollective	agent	doesn’t	have	to	wait	for	a	request	from	a	client.	You	could	build
agents	that	respond	to	events	on	the	node	and	submit	data	to	a	client	listener.	The	agent
could	be	slim,	and	the	listener	could	be	a	complex	program	capable	of	taking	action
based	on	the	input.	This	is	how	you	can	build	self-healing	infrastructure.	Build	a
listener	from	the	example	in	Chapter	22.

This	is	really	just	the	beginning	of	questions	you	can	ask	yourself.	Think	about	the
metaphor	and	how	it	could	apply	to	your	environment.	Consider	what	you	can	accomplish.

Tip

Then	throw	away	the	metaphor	and	consider	choices	that	make	no	sense	with	a	marionette
and	puppets	on	a	string,	too.

Utilize	Support	Resources
As	you	go	forth	with	MCollective,	I	want	to	remind	you	of	three	mechanisms	for	support
with	your	collectives:

#mcollective	channel	on	Freenode

There	is	an	IRC	channel	on	Freenode	for	support	of	open	source	MCollective.	Puppet
Labs	employees	and	other	developers	and	users	of	MCollective	provide	ad	hoc
assistance	in	this	channel.	You	will	get	the	best	response	if	you	provide	configuration
samples	and	logs	using	a	paste	service	like	Gist	or	Pastebin.

mcollective-users@googlegroups.com

Puppet	Labs	provides	a	mailing	list	for	support	of	open	source	MCollective.	This	is	the
best	channel	for	support	involving	complex	questions	or	significant	details.	Puppet	Labs
employees	and	other	developers	of	MCollective	sometimes	discuss	deployment	issues
and	develop	consensus	on	changes	in	this	mailing	list.

Puppet	Enterprise

Puppet	Labs	has	a	commercial	product	called	Puppet	Enterprise	that	contains
MCollective	and	has	standard	and	premium	support	plans.	This	is	your	best	path	for
commercial	support	with	a	service-level	agreement.

Everything	you	learn	in	this	book	is	applicable	to	the	Puppet	Enterprise	usage	of
MCollective,	but	the	base	path	to	the	configuration	files	becomes	/opt/puppet.

I	personally	contribute	time	to	assist	people	on	both	the	IRC	channel	and	mailing	list	as
much	as	my	day	job,	tech	writing,	and	need	to	sleep	permit.

You	are	welcome	and	encouraged	to	submit	any	errors	you	find	in	this	book	using	the
View/Submit	Errata	link	on	the	O’Reilly	page	for	Learning	MCollective.	We	appreciate
your	comments	and	intend	to	publish	regular	updates	to	the	book.

http://bit.ly/1nwbxPK
https://gist.github.com/
http://pastebin.com/
http://bit.ly/1nwbzHA
http://puppetlabs.com/puppet/puppet-enterprise
http://oreilly.com/catalog/errata.csp?isbn=0636920032472
http://shop.oreilly.com/product/0636920032472.do

Read	Blogs
I	have	found	the	following	blogs	to	be	useful	for	monitoring	the	development	and	use	of
MCollective.	Some	of	these	are	very	active,	others	not	as	much.	I’ve	always	found	the
content	useful:

R.I.	Pienaar	(original	author	of	MCollective)	
http://www.devco.net/	and	https://twitter.com/ripienaar
Richard	Clamp	(one	of	the	most	active	committers	on	MCollective	and	a	helpful	voice
on	#mcollective)	
http://richardc.unixbeard.net/	and	https://twitter.com/richardclamp
Peter	Loubser	(the	other	active	committer	on	MCollective	and	another	helpful	voice	on
#mcollective)	
https://twitter.com/pieterloubser
Jo	Rhett	(author	of	this	book)	
http://www.netconsonance.com/	and	https://twitter.com/jorhett

Tip

OK,	so	I	don’t	read	that	last	blog	as	much	as	I	should,	but	I’ve	heard	there’s	MCollective-
related	stuff	posted	there	:)

There	will	be	plugins	and	tips	on	MCollective	above	and	beyond	this	book	available	at
http://www.netconsonance.com/tag/mcollective.

http://www.devco.net/
https://twitter.com/ripienaar
http://richardc.unixbeard.net/
https://twitter.com/richardclamp
https://twitter.com/pieterloubser
http://www.netconsonance.com/
https://twitter.com/jorhett
http://www.netconsonance.com/tag/mcollective

Take	the	Strings	Now
Now	we	are	at	the	end.	I	have	taught	you	everything	I	know	about	MCollective.	You	have
the	strings	in	your	hands	now,	and	you	have	the	knowledge	necessary	to	make	your
marionettes	—	er,	I	mean	servers	—	dance.

You	may	have	skipped	through	some	sections	of	this	book.	That’s	OK;	this	book	was
meant	to	be	something	you	could	take	a	bit	from,	then	come	back	again	later	to.	I	do	hope
you	read	about	the	security	considerations	of	the	default	installation	in	Chapter	13.	If	not,
run	back	and	read	that	right	now.

Believe	it	or	not,	your	journey	is	just	beginning.	As	you	become	more	familiar	and
comfortable	using	MCollective,	you	will	find	more	and	more	ways	to	use	it.	The	people	at
nearly	every	site	I	have	installed	MCollective	at	spent	time	wondering	how	they	would
use	it.	In	less	than	a	year,	they	have	all	expressed	to	me	that	they	have	no	idea	how	they
ever	got	along	without	it.

I	fully	expect	you	to	be	one	of	those	advocates.	I	look	forward	to	hearing	how	you	use
MCollective	and	what	unimagined	new	functionality	you’ve	implemented	for	your	team.

Appendix	A.	Tips	and	Tools

Useful	Commands	Reference
Show	all	configuration	data	about	an	MCollective	server:

$	mco	inventory	hostname

Test	connectivity	to	an	MCollective	server	or	list	of	them:
$	mco	ping	hostname

$	mco	ping	--nodes	/path/to/hostlist

Commands	for	testing	host	services	(nettest	agent):
$	mco	nettest	ping	activemq.example.net

$	mco	nettest	connect	activemq.example.net	61613

Find	hosts	that	match	certain	criteria:
$	mco	find	--with-identity	/web/

$	mco	find	--with-class	webserver

$	mco	find	--with-fact	operatingsystem=CentOS

$	mco	find	--with-agent	package

$	mco	find	--with	"/nameserver/	operatingsystem=CentOS"

$	mco	find	--select	"operatingsystem=Ubuntu	and	/operatingsystemrelease=13.10/"

$	mco	find	--select	"(operatingsystem=CentOS	and	!environment=dev)	

		and	is_virtual=true"

Commands	for	controlling	files	(filemgr	agent):
$	mco	filemgr	--file	/tmp/junk	touch

$	mco	filemgr	--file	/tmp/junk	--detail	status

$	mco	filemgr	--file	/tmp/junk	remove

Commands	for	controlling	packages	(package	agent):
$	mco	package	top	status

$	mco	package	-y	top	install

$	mco	package	-y	top	update

$	mco	package	-y	top	uninstall

$	mco	package	-y	top	purge

Commands	for	controlling	system	services	(service	agent):
$	mco	service	ntpd	status

$	mco	service	ntpd	restart

$	mco	service	ntpd	stop

$	mco	service	ntpd	start

Commands	for	controlling	the	Puppet	agent:
$	mco	puppet	count

$	mco	puppet	summary

$	mco	puppet	disable	--with-identity	hostname	message="Know	this…"

$	mco	puppet	enable	--with-identity	hostname

$	mco	puppet	runonce	--tags=tags	--with-fact	fact=value

$	mco	puppet	runall	5	--no-noop	--tags=sudo

Using	r10k	to	install	Puppet	Modules
r10k	provides	a	general	purpose	toolset	for	deploying	Puppet	environments	and
modules.	It	implements	the	Puppetfile	format	and	provides	a	native	implementation	of
Puppet	dynamic	environments.	

—	https://github.com/adrienthebo/r10k

To	translate	that	into	English,	r10k	takes	all	the	work	out	of	managing	a	collection	of
Puppet	modules	and	their	dependencies	on	GitHub.	If	you’d	like	to	deploy	the	Learning
MCollective	test	environment	(exactly	as	I	used	it	when	writing	this	book)	in	a	fresh	new
environment,	this	is	the	fastest	way	to	do	it.

If	you	don’t	have	r10k	installed	yet,	let’s	do	this	first.	Install	it	directly	from	the	gem:
$	sudo	gem	install	r10k

Successfully	installed	colored-1.2

Successfully	installed	cri-2.5.0

Successfully	installed	systemu-2.5.2

Successfully	installed	log4r-1.1.10

Successfully	installed	multi_json-1.8.4

Successfully	installed	json_pure-1.8.1

Successfully	installed	multipart-post-1.2.0

Successfully	installed	faraday-0.8.9

Successfully	installed	faraday_middleware-0.9.1

Successfully	installed	faraday_middleware-multi_json-0.0.5

Successfully	installed	r10k-1.2.1

11	gems	installed

If	you	are	using	Ruby	1.8,	then	you	may	see	errors	like	this	when	you	run	r10k:
Faraday:	you	may	want	to	install	system_timer	for	reliable	timeouts

If	so,	install	the	gem	specified:
$	sudo	gem	install	system_timer

Building	native	extensions.		This	could	take	a	while…

Successfully	installed	system_timer-1.2.4

1	gem	installed

Now	that	r10k	is	installed,	you	can	proceed	with	using	it	to	install	the	MCollective
module.	The	following	command	will	set	up	all	of	the	modules	in	this	book:

$	wget	https://raw.githubusercontent.com/jorhett/learning-mcollective/master/

		r10k.yaml

$	r10k	deploy	-c	r10k.yaml	environment	learning_mcollective	-p

This	will	install	files	in	a	learning_mcollective	environment;	it	will	not	affect	your
production	environment.	You’re	going	to	need	to	make	some	changes	to	these	files	before
they	will	work.	Edit	the	files	in	/etc/puppet/environments/learning_mcollective/hieradata/
as	follows:

1.	 Rename	the	two	example.net	node-specific	YAML	files	to	the	names	of	your
middleware	broker	and	a	client	system.

2.	 Generate	random	passwords	with	openssl	rand	-base64	32	and	put	these	values	in
the	_password	fields	in	the	files.

If	you	are	using	a	version	of	Puppet	below	3.5.0,	you	will	need	changes	like	the	following
in	the	puppet.conf	file	to	use	dynamic	environments:

[main]

		modulepath	=	$confdir/environments/$environment/modules:$confdir/modules

[master]

https://github.com/adrienthebo/r10k

		hiera_config	=	$confdir/environments/$environment/hiera/hiera.yaml

		manifest					=	$confdir/environments/$environment/manifests/site.pp

Note

More	documentation	about	(pre	v3.5)	dynamic	environments	can	be	found	at
http://docs.puppetlabs.com/guides/environment.html.	Documentation	for	the	new	directory
environments	in	v3.5	and	later	can	be	found	at
http://docs.puppetlabs.com/puppet/latest/reference/environments.html.

After	you	have	made	these	changes,	you	can	test	out	the	module	using	this	Puppet
command:

$	puppet	agent	--test	--environment	learning_mcollective

http://docs.puppetlabs.com/guides/environment.html
http://docs.puppetlabs.com/puppet/latest/reference/environments.html

Using	the	PuppetLabs	MCollective	Module
Puppet	Labs	also	provides	an	MCollective	module	on	the	Puppet	Forge	at
https://github.com/puppetlabs/puppetlabs-mcollective.	This	module	is	not	covered	in	this
book	for	the	following	reasons:	

If	you	don’t	override	them,	the	setup	will	use	well-known	usernames	and	passwords.	A
mistype	would	make	your	setup	vulnerable	to	attack.
It	doesn’t	separate	client	and	server	permissions.	Using	the	same	authentication	creates
a	security	problem	—	if	any	server	is	compromised,	it	can	control	all	other	servers.
It	doesn’t	separate	client	permissions	and	broker	link	permissions.
The	Puppet	Labs	module	has	numerous	external	dependencies.	This	can	be	distracting
to	set	up	when	trying	to	follow	the	book.

The	module	provided	in	this	book	allowed	a	simple	setup	to	work	immediately,	and	then	a
way	for	you	to	add	more	as	you	read	each	chapter	in	the	book.

The	Puppet	Labs	module	does	things	a	little	different,	and	you	should	take	a	look.	Now
that	you	are	proficient	with	MCollective,	you	may	find	this	module	very	useful.	Here	is	a
baseline	configuration	that	worked	properly	and	isn’t	documented	as	clearly	in	the	module
itself:

class	{	'::mcollective::common::setting':

		connector																	=>	activemq,

		middleware_hosts										=>	['activemq.example.net'],

		middleware_user											=>	'server',

		middleware_password							=>	'IamAServerLaLaLa',

		middleware_admin_user					=>	'admin',

		middleware_admin_password	=>	'IAmAClientHoHoHo',

		securityprovider										=>	'psk',

		psk																							=>	'DearGnuChangeMe',

}

node	'activemq.example.net'	{

		class	{	'::mcollective':

				middleware	=>	true

		}

}

node	'server.example.net'	{

		class	{	'::mcollective':	}

}

node	'client.example.net'	{

		class	{	'::mcollective':

				client	=>	true

		}

}

Warning

You	are	smart	enough	to	change	these	passwords,	aren’t	you?	Remember	that	openssl
rand	-base64	32	is	your	friend.

https://github.com/puppetlabs/puppetlabs-mcollective

Using	RabbitMQ
If	you	already	have	RabbitMQ	in	your	environment,	or	if	you	need	AMQP	support	(e.g.,	for
logstash),	then	you	may	want	to	use	RabbitMQ	instead	of	ActiveMQ	as	the	middleware
for	MCollective.	In	this	section,	we’ll	go	over	how	to	setup	RabbitMQ	and	then	how	to
migrate	your	MCollective	environment	to	it.

Installing	RabbitMQ
The	process	for	installing	RabbitMQ	varies	widely	depending	on	your	operating	system
type.	In	my	experience,	the	versions	of	RabbitMQ	available	in	your	operating	system
package	repositories	are	generally	not	the	best	choice.	RabbitMQ	has	been	evolving
rapidly,	and	recent	versions	work	much	better	with	MCollective.

I	recommend	that	you	use	the	packages	provided	from	the	RabbitMQ	download	page.
There	are	instructions	specific	to	each	operating	system	in	the	“Installation	Guides”
section.

The	necessary	steps	are	the	following:

1.	 Install	Erlang	dependencies	from	your	OS	packing	providers.
2.	 Install	the	RabbitMQ	package.

On	CentOS,	the	process	looks	like	this:
$	sudo	rpm	--import	http://www.rabbitmq.com/rabbitmq-signing-key-public.asc

$	sudo	yum	install	rabbitmq-server-3.3.2-1.noarch.rpm	--enablerepo=epel

Loaded	plugins:	fastestmirror,	security

Loading	mirror	speeds	from	cached	hostfile

	*	base:	centos.sonn.com

	*	epel:	mirror.prgmr.com

	*	extras:	centos.sonn.com

	*	updates:	centos.sonn.com

Setting	up	Install	Process

Examining	rabbitmq-server-3.3.2-1.noarch.rpm:	rabbitmq-server-3.3.2-1.noarch

Marking	rabbitmq-server-3.3.2-1.noarch.rpm	to	be	installed

Resolving	Dependencies

-->	Running	transaction	check

--->	Package	rabbitmq-server.noarch	0:3.3.2-1	will	be	installed

-->	Processing	Dependency:	\

erlang	>=	R13B-03	for	package:	rabbitmq-server-3.3.2-1.noarch

-->	Running	transaction	check

--->	Package	erlang.x86_64	0:R14B-04.3.el6	will	be	installed

				...you	know	this	drill

Complete!

Enable	the	STOMP	connector	and	management	plugins
If	you	are	using	Linux	or	Unix,	the	following	commands	will	enable	the	STOMP
connector	and	the	management	plugins:

$	sudo	rabbitmq-plugins	enable	rabbitmq_stomp

rabbitmq-plugins	enable	rabbitmq_stomp

The	following	plugins	have	been	enabled:

		amqp_client

		rabbitmq_stomp

Plugin	configuration	has	changed.	Restart	RabbitMQ	for	changes	to	take	effect.

$	sudo	rabbitmq-plugins	enable	rabbitmq_management

The	following	plugins	have	been	enabled:

		mochiweb

		webmachine

		rabbitmq_web_dispatch

		rabbitmq_management_agent

		rabbitmq_management

Plugin	configuration	has	changed.	Restart	RabbitMQ	for	changes	to	take	effect.

Start	the	server
Use	the	commands	appropriate	for	your	architecture:

$	sudo	chkconfig	rabbitmq	on

$	service	rabbitmq	start

Starting	rabbitmq-server:	SUCCESS

http://www.rabbitmq.com/download.html

rabbitmq-server.

You	may	see	a	failure	message	about	could	not	start,	rabbitmq_stomp:
$	sudo	chkconfig	rabbitmq	on

$	service	rabbitmq	start

Starting	rabbitmq-server:	FAILED	-	check	/var/log/rabbitmq/startup_{log,	_err}

rabbitmq-server.

$	tail	/var/log/rabbitmq/startup_log

Error	description:

			{could_not_start,rabbitmq_stomp,

																				{shutdown,{rabbit_stomp,start,[normal,[]]}}}

Log	files	(may	contain	more	information):

			/var/log/rabbitmq/rabbit@geode.log

			/var/log/rabbitmq/rabbit@geode-sasl.log

{"init	terminating	in	do_boot",{rabbit,failure_during_boot,

{could_not_start,rabbitmq_stomp,{shutdown,

{rabbit_stomp,start,[normal,[]]}}}}}

This	means	that	RabbitMQ	can’t	listen	on	the	default	port	for	STOMP	protocol,	for
example,	61613.	This	probably	means	that	you	are	trying	to	run	RabbitMQ	and	ActiveMQ
on	the	same	system.

Install	the	CLI	tool
Download	the	CLI	tool	from	your	new	RabbitMQ	broker	and	install	it	somewhere	in	your
path:

$	curl	-sS	http://rabbitmq.example.net:15672/cli/rabbitmqadmin	-o	rabbitmqadmin

$	sudo	mv	rabbitmqadmin	/usr/local/sbin/

If	you’d	like	to	enable	bash	completion	for	rabbitmqadmin,	run	the	following	command:
$	rabbitmqadmin	--bash-completion	|	sudo	tee	/etc/bash_completion.d/rabbitmqadmin

Configuring	RabbitMQ	with	Puppet
The	puppet-mcollective	module	we	installed	in	Chapter	7	can	configure	a	baseline
RabbitMQ	instance.	You	would	define	the	middleware	node	setup	and	the	following	Hiera
values	for	the	common.yaml	file:	

#	Common	Hiera	definitions

classes:

		-	mcollective::middleware

mcollective::hosts:

		-	'rabbitmq.example.net'

mcollective::connector:	rabbitmq

For	the	rabbitmq.example.net.yaml	file,	use:
#	Common	Hiera	definitions

mcollective::middleware::directory		:	/etc/rabbitmq

mcollective::middleware::config_file:	rabbitmq.config

mcollective::middleware::user							:	rabbitmq

mcollective::middleware::service				:	rabbitmq-server

And	declarative	Puppet	policy	statements	would	look	like	this:
#	Declarative	policy

node	default	{

		class	{	'mcollective':

				connector	=>	'rabbitmq',

				hosts					=>	['rabbitmq.example.net'],

		}

}

#	Declarative	policy

		class	{	'mcollective::middleware':

				directory			=>	'/etc/rabbitmq',

				config_file	=>	'rabbitmq.conf',

				user								=>	'rabbitmq',

				service					=>	'rabbitmq-server',

		}

}

The	RabbitMQ	module	will	perform	the	queue	and	topic	setup	steps	documented	in	the
following	section.

Configuring	RabbitMQ	Manually
The	final	step	is	to	configure	the	queues	and	topics	for	MCollective:

$	rabbitmqadmin	declare	vhost	name=/mcollective

vhost	declared

$	rabbitmqadmin	declare	user	name=client	tags=administrator	\

password=Client	Password

user	declared

$	rabbitmqadmin	declare	permission	vhost=/mcollective	\

user=client	configure='.*'	write='.*'	read='.*'

permission	declared

$	rabbitmqadmin	declare	user	name=server	tags=	password=Server	Password

user	declared

$	rabbitmqadmin	declare	permission	vhost=/mcollective	\

user=server	configure='.*'	write='.*'	read='.*'

permission	declared

$	for	collective	in	mcollective	subcollective1	subcollective2…;	do

		rabbitmqadmin	declare	exchange	--user=client	--password=Client	Password	\

				--vhost=/mcollective	name=${collective}_broadcast	type=topic

		rabbitmqadmin	declare	exchange	--user=client	--password=Client	Password	\

				--vhost=/mcollective	name=${collective}_directed	type=direct

done

exchange	declared

exchange	declared

exchange	declared

exchange	declared

exchange	declared

exchange	declared

Using	an	Exchange	with	a	RabbitMQ	Federation
Testing	has	indicated	that	RabbitMQ	won’t	support	reply	delivery	using	queues	in	a
RabbitMQ	federation.	If	you	are	using	a	federation,	you	will	need	to	configure	the	clients
to	receive	replies	using	an	exchange	instead	of	a	queue:

$	rabbitmqadmin	declare	exchange	--user=client	--password=password	#1	\

		--vhost=/mcollective	name=mcollective_reply	type=direct

Then	you	would	modify	the	client	configuration	file	as	such:
plugin.rabbitmq.use_reply_exchange	=	true

You	can	find	more	specific	information	about	RabbitMQ	collectives	at
http://docs.puppetlabs.com/mcollective/reference/plugins/connector_rabbitmq.html	and
about	RabbitMQ	itself	at	http://www.rabbitmq.com.

http://docs.puppetlabs.com/mcollective/reference/plugins/connector_rabbitmq.html
http://www.rabbitmq.com

Appendix	B.	OS	Specifics

Configuring	Debian	and	Ubuntu	Firewalls
Debian	and	Ubuntu	systems	have	iptables	installed	by	default,	but	often	without	any
blocking	lines.	First	check	and	see	if	you	have	configured	the	firewall.	If	so,	just	add	a
new	rule	to	allow	the	middleware	service	to	be	reached,	as	follows:

$	sudo	iptables	--list	--line-numbers

Chain	INPUT	(policy	ACCEPT)

num		target			prot	opt	source								destination

1				ACCEPT			all	—	anywhere						anywhere							state	RELATED,ESTABLISHED

...etc…

Look	through	the	output	and	find	an	appropriate	line	number	for	this	rule:
$	sudo	iptables	-I	INPUT	20	-m	state	--state	NEW	-p	tcp	\

		--source	192.168.200.0/24	--dport	61613	-j	ACCEPT

If	you	have	not	confirmed	the	firewall	yet,	you	can	set	up	a	very	basic	firewall	that	only
allows	SSH,	ICMP,	and	ActiveMQ	as	follows:

$	sudo	iptables	-A	10	INPUT	-m	state	--state	RELATED,ESTABLISHED	-j	ACCEPT

$	sudo	iptables	-A	20	INPUT	-p	icmp	-j	ACCEPT

$	sudo	iptables	-A	30	INPUT	-i	lo	-j	ACCEPT

$	sudo	iptables	-A	40	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--dport	22	-j	

		ACCEPT

$	sudo	iptables	-A	50	INPUT	-m	state	--state	NEW	-p	tcp	\

		--source	192.168.200.0/24	--dport	61613	-j	ACCEPT

$	sudo	iptables	-A	9999	INPUT	-j	REJECT	--reject-with	icmp-host-prohibited

If	all	of	your	servers	will	fit	within	a	few	subnet	masks,	it	is	advisable	to	limit	this	rule	to
only	allow	those	subnets.	Don’t	forget	to	save	that	rule	to	your	initial	rules	file.	For
Debian	and	Ubuntu	systems,	you	have	to	manually	set	up	loading	and	unloading	the
firewall	yourself.	Here’s	a	process	that	will	do	that	for	you:

$	sudo	"iptables-save	>	/etc/iptables.rules"

iptables:	Saving	firewall	rules	to	/etc/sysconfig/iptables:[OK]

$	sudo	vim	/etc/network/if-pre-up.d/iptables

#!/bin/sh

/sbin/iptables-restore	<	/etc/iptables.rules

$	sudo	chmod	+x	/etc/network/if-pre-up.d/iptables

More	details	can	be	found	at	https://wiki.debian.org/iptables	or
https://help.ubuntu.com/community/IptablesHowTo.

Note

My	apologies,	I	didn’t	include	IPv6-specific	instructions	in	this	section.	The	commands
are	nearly	identical	to	the	IPv4	counterparts.	You	can	see	fully	documented	IPv6	examples
in	“Configuring	ActiveMQ”.

https://wiki.debian.org/iptables
https://help.ubuntu.com/community/IptablesHowTo

FreeBSD
Although	Puppet	Labs	only	provides	binary	packages	for	Linux	systems,	I	was	able	to	use
FreeBSD	as	a	server,	client,	and	middleware	broker	successfully	while	writing	this	book.
The	configuration	steps	specific	to	FreeBSD	follow.

Using	the	Next	Generation	Package	Manager
For	FreeBSD	10	and	above,	use	a	new	package	management	system.	If	you	are	on
FreeBSD	9,	you	will	have	to	make	some	changes	to	your	system	to	use	the	new	package
manager.	I	recommend	doing	this,	as	it	will	greatly	improve	Puppet’s	ability	to	manage
packages	on	your	systems.

Details	on	migrating	to	the	new	package	manager	are	at	https://wiki.freebsd.org/pkgng.	By
the	time	this	book	is	out,	Puppet	hopefully	will	have	the	new	package	manager	integrated
(see	bug	PUP-1716),	but	until	then,	you	can	install	the	module	from	the	Forge:

$	puppet	module	install	zleslie/pkgng

Then	add	the	following	to	your	manifests:
if	($::osfamily	==	'FreeBSD')	{

		include	pkgng

		Package	{

				provider	=>	pkgng,

		}

}

https://wiki.freebsd.org/pkgng

Configuring	ActiveMQ
Altering	the	Java	environment	parameters	is	done	with	the	activemq_javargs	parameter
in	/etc/rc.conf.	Note	that	FreeBSD	cuts	the	memory	of	ActiveMQ	in	half	compared	to
Linux	distributions,	such	that	Java	is	limited	to	256	MB	total.	You	probably	want	to
quadruple	this	if	you	have	the	memory	available.

Configuring	the	Firewall
FreeBSD	ships	with	IPFW	installed	and	available	in	the	base	system.	Unlike	iptables,
one	can	mix	IPv4	and	IPv6	statements	in	the	same	configuration.	You	could	use	the
following	steps	to	add	a	firewall	rule	to	permit	inbound	connections	to	a	FreeBSD
ActiveMQ	middleware	host:

$	sudo	ipfw	list

00010	allow	ip	from	any	to	any	via	lo0

00011	deny	ip	from	any	to	127.0.0.0/8

00012	deny	ip	from	any	to	[::1]/8

00020	check-state

00021	allow	tcp	from	any	to	any	out	setup	keep-state

...etc…

Look	through	the	output	and	find	an	appropriate	line	number	for	this	rule:
$	sudo	ipfw	-q	add	31	allow	tcp	from	2001:DB8:6A:C0::/64	to	any	61613	in

$	sudo	ipfw	-q	add	32	allow	tcp	from	192.168.200.0/24	to	any	61613	in

If	all	of	your	servers	will	fit	within	a	few	subnet	masks,	it	is	advisable	to	limit	this	rule	to
only	allow	those	subnets.	Don’t	forget	to	save	that	rule	to	your	initial	rules	file	and	enable
it	to	be	read	at	boot	time:

firewall_enable="YES"

firewall_script="/etc/ipfw.rules"

ipfw	-q	-f	flush							#	Delete	all	rules

IPF="ipfw	-q	add	"					#	build	rule	prefix

$IPF	00010	allow	ip	from	any	to	any	via	lo0

$IPF	00011	deny	ip	from	any	to	127.0.0.0/8

$IPF	00012	deny	ip	from	any	to	[::1]/8

$IPF	00020	check-state

$IPF	00021	allow	tcp	from	any	to	any	out	setup	keep-state

$IPF	00022	allow	udp	from	any	to	any	out	keep-state

$IPF	00023	allow	icmp	from	any	to	any

$IPF	31	allow	tcp	from	2001:DB8:6A:C0::/64	to	any	61613	in

$IPF	32	allow	tcp	from	192.168.200.0/24	to	any	61613	in

More	details	can	be	found	at	http://www.freebsd.org/doc/handbook/firewalls-ipfw.html.

http://www.freebsd.org/doc/handbook/firewalls-ipfw.html

Installing	Agents
At	the	time	this	book	was	written,	none	of	the	agents	was	packaged	for	FreeBSD,	and	the
package	tool	did	not	support	FreeBSD.	To	install	agents	on	FreeBSD,	follow	the
instructions	in	“Installing	from	Source”.	Here	is	a	short	recap	with	FreeBSD-specific
paths:

$	git	clone	http://github.com/puppetlabs/mcollective-filemgr-agent.git

Cloning	into	'mcollective-filemgr-agent'...

remote:	Reusing	existing	pack:	49,	done.

remote:	Total	49	(delta	0),	reused	0	(delta	0)

Unpacking	objects:	100%	(49/49),	done.

Checking	connectivity…	done

$	cd	mcollective-filemgr-agent

$	cp	agent/filemgr.rb	/usr/local/share/mcollective/agent/

$	cp	agent/filemgr.dll	/usr/local/share/mcollective/agent/

$	cp	application/filemgr.rb	/usr/local/share/mcollective/application/

$	sudo	service	mcollectived	restart

Stopping	mcollectived.

Starting	mcollectived.

Mac	OS	X
If	you’d	like	to	be	able	to	make	MCollective	requests	from	your	Mac	desktop,	or	even
subscribe	as	a	server	from	your	Mac,	the	process	to	set	this	up	is	pretty	easy.

Installing	Ruby
Macs	with	Mountain	Lion	(10.8)	come	with	Ruby	1.8.7	installed,	which	is	good.	Macs
with	Mavericks	(10.9)	or	Yosemite	(10.10)	have	Ruby	2.0,	which	is	also	good.	If	your
Mac	doesn’t	have	an	appropriate	version	of	Ruby	installed,	you	want	to	install	Ruby	1.9.3.
To	do	this,	install	MacPorts	and	then	use	the	following	commands:

For	Ruby	1.9

$	port	install	ruby19	+nosuffix

The	only	remaining	requirement	necessary	is	to	install	the	STOMP	gem:
$	gem	install	stomp

Successfully	installed	stomp-1.3.2

1	gem	installed

Installing	ri	documentation	for	stomp-1.3.2…

Installing	RDoc	documentation	for	stomp-1.3.2…

Installing	MCollective
At	the	time	of	writing,	there	were	no	packages	available	for	MCollective,	but	the	process
to	build	proper	Mac	OS	packages	is	not	difficult.

You	will	need	Xcode	installed	on	one	system	where	you	can	build	the	Mac	OS	package	to
install	on	the	remaining	systems.	You	can	get	Xcode	from	Mac	App	Store:	Xcode.

Next,	you	should	download	the	latest	stable	release	from	GitHub	and	install	it	like	so:
$	curl	-sL	\

		https://github.com/puppetlabs/marionette-collective/archive/2.5.3.tar.gz	\

				-o	marionette-collective-2.5.3.tar.gz

$	tar	xzf	marionette-collective-2.5.3.tar.gz

$	cd	marionette-collective-2.5.3

$	bash	ext/osx/bldmacpkg	.

..................

created:	/Users/jorhett/marionette-collective-2.5.3/mcollective-2.5.3.dmg

At	the	time	this	book	was	written,	the	script	didn’t	properly	find	the	version,	and	you
would	get	packages	named	mcollective-@DEVELOPMENT_VERSION@.dmg.	My
workaround	for	that	problem	was	to	simply	edit	one	file	before	building	the	packages:

$	$EDITOR	lib/mcollective.rb

			VERSION="2.5.3"

At	the	time	this	book	was	written,	the	installation	would	incorrectly	install	the	modules	in
the	Ruby	1.8	site_lib	directory	on	Mavericks	and	Yosemite.	My	workaround	for	that
problem	was	to	simply	edit	one	file	before	building	the	packages:

$	$EDITOR	ext/osx/bldmacpkg

Replace	all	instances	of	/Library/Ruby/Site/1.8	with	/Library/Ruby/Site/2.0.0

You	can	take	these	packages	and	install	them	on	any	Mac	(Figure	B-1).	Note	that	you	have
to	manually	install	the	MCollective-Common	package	on	each	machine;	the	server	and
client	packages	won’t	include	it.	Configuring	MCollective	and	using	it	is	identical	to	any
other	Unix	platform.	Here’s	a	test	from	my	home	iMac	to	a	remote	colocation	facility:

$	sudo	$EDITOR	/etc/mcollective/client.cfg

Password:

http://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

Figure	B-1.	The	Mac	OS	installer	packages

Update	the	configuration	to	match	your	other	client	systems.	Then	test	just	as	before:
$	mco	ping

sunstone																																	time=52.14	ms

geode																																				time=52.59	ms

fireagate																																time=52.95	ms

heliotrope																															time=56.69	ms

----	ping	statistics	----

4	replies	max:	56.69	min:	52.14	avg:	53.59

Upgrades	Overwrite	the	Configuration	Files
At	the	time	I	tested,	upgrading	the	MCollective	client	on	my	Mac	overwrote	the	previous
client	configuration	file.	So	make	a	backup	of	your	configuration	files	before	you	perform
an	upgrade.12

Solaris
At	the	time	I	wrote	this	book,	the	Solaris	MCollective	servers	and	clients	had	to	be
compiled	from	source.	The	good	news	is	that	contributed	Makefiles	already	existed	to
make	the	process	easy.

Installing	on	Solaris	11
Installing	MCollective	on	Solaris	11	is	quite	easy:

$	pkg	install	pkg:/runtime/ruby-18x

$	pkg	install	system/header

$	pkg	install	developer/gcc-3

$	gem	install	stomp

$	gem	install	json

$	wget	-q	https://github.com/puppetlabs/marionette-collective/archive/2.5.3	\

		.tar.gz	-O	marionette-collective-2.5.3.tar.gz

$	tar	xzf	marionette-collective-2.5.3.tar.gz

$	cd	marionette-collective-2.5.3

$	make	-f	ext/solaris11/Makefile	install

Updates	to	this	process	and	instructions	on	how	to	build	IPS	packages	are	available	in	the
ext/solaris11/README	file.

Installing	on	Solaris	10	and	Before
Install	the	following	OpenCSW	packages	to	meet	the	requirements	for	running
MCollective	from	OpenCSW	Solaris	packages:

coreuitls	(CSWcoreutils)
gmake	(CSWgmake)
ggrep	(CSWggrep)
ruby	(CSWruby)
rubygems	(CSWrubygems)

Install	the	STOMP	and	JSON	RubyGems.	You	can	do	this	with	the	gem	command:
$	gem	install	stomp

$	gem	install	json

Or	download	the	RubyGems	from	https://rubygems.org/gems/stomp	and
https://rubygems.org/gems/json	and	install	them	directly:

$	gem	install	--local	stomp-1.3.2.gem

$	gem	install	--local	json-1.8.1.gem

Now	that	all	the	dependencies	are	installed,	build	MCollective:
$	wget	-q	https://github.com/puppetlabs/marionette-collective/archive/2.5.3	\

		.tar.gz	-O	marionette-collective-2.5.3.tar.gz

$	tar	xzf	marionette-collective-2.5.3.tar.gz

$	cd	marionette-collective-2.5.3/ext/solaris

$./build

Your	client	and	server	configuration	files	will	need	to	reference	the	OpenCSW-specific
plugin	path.	This	will	be	the	same	place	you	will	put	agent	and	client	plugin	files:

libdir	=	/opt/csw/share/mcollective/plugins

Updates	to	this	process	are	available	in	the	ext/solaris/README	file.

http://www.opencsw.org/
https://rubygems.org/gems/stomp
https://rubygems.org/gems/json

Windows
Windows	is	not	fully	supported	in	the	community	version	of	MCollective	at	this	time,	but
mcollectived	and	various	agents	all	seem	to	function	naturally.	Let’s	take	a	look	at	the
process	for	installing	MCollective	on	a	Windows	server.

Acquiring	Ruby
Installing	Ruby	on	Windows	is	very	straightforward:

1.	 Go	to	http://rubyinstaller.org/	(Figure	B-2).

Figure	B-2.	RubyInstaller.org

2.	 Click	Download.
3.	 Under	RubyInstallers,	click	version	1.9.3.
4.	 If	prompted,	choose	to	run	rubyinstaller-1.9.3,	as	shown	in	Figure	B-3.

Figure	B-3.	MSIE	download	prompt

5.	 Choose	your	language.
6.	 Read	the	license	and	agree	if	it	suits	you.
7.	 On	the	Optional	Tasks	screen,	select	the	following	options	(as	shown	in	Figure	B-4):

a.	 Add	Ruby	executables	to	your	path
b.	 Associate	.rb	files	with	this	Ruby	installation

http://rubyinstaller.org/

Figure	B-4.	Ruby	Installer	optional	tasks

8.	 Click	Finish.

Adding	the	RubyGem	Dependencies
Install	the	RubyGem	dependencies	by	opening	the	Command	Prompt	and	typing	the
following	three	commands.	You	can	find	the	Command	Prompt	in	the	Start	Menu	under
All	Programs	→	Accessories:

C:\>	gem	install	--no-rdoc	--no-ri	stomp	win32-service	sys-admin	windows-api

Fetching:	stomp-1.3.2.gem	(100%)

Successfully	installed	stomp-1.3.2

Fetching:	win32-service-0.8.4.gem	(100%)

Successfully	installed	win32-service-0.8.4

Fetching:	sys-admin-1.6.3.gem	(100%)

Successfully	installed	sys-admin-1.6.3

Fetching:	win32-api-1.5.1-universal-mingw32.gem	(100%)

Fetching:	windows-api-0.4.2.gem	(100%)

Successfully	installed	win32-api-1.5.1-universal-mingw32

Successfully	installed	windows-api-0.4.2

5	gems	installed

C:\>	gem	install	--no-rdoc	--no-ri	win32-dir	-v	0.3.7

Fetching:	windows-pr-1.2.3.gem	(100%)

Fetching:	win32-dir-0.3.7.gem	(100%)

Successfully	installed	windows-pr-1.2.3

Successfully	installed	win32-dir-0.3.7

2	gems	installed

C:\>	gem	install	--no-rdoc	--no-ri	win32-process	-v	0.5.5

Fetching:	win32-process-0.5.5.gem	(100%)

Successfully	installed	win32-process-0.5.5

1	gem	installed

C:\>	exit

Installing	MCollective
At	the	time	of	writing,	there	were	no	Windows	packages	available	for	MCollective,	but
the	process	to	install	MCollective	is	easy:

1.	 Download	the	latest	stable	release	from	GitHub.
2.	 Extract	the	files	into	the	C:\mcollective\	directory.
3.	 Fix	the	version	string.	

At	the	time	this	book	was	written,	the	daemon	didn’t	properly	find	the	version,	and
you	would	be	told	that	mcollectived	was	version	@DEVELOPMENT_VERSION@.	My
workaround	for	that	problem	was	to	simply	edit	C:\mcollective\lib\mcollective.rb
before	taking	any	other	steps.	
Change:	VERSION="2.5.3"

4.	 Move	the	binaries	into	place	using	the	Command	Prompt	again:
C:\>	cd	\mcollective

C:\mcollective>copy	ext\windows*.*	bin\

ext\windows\daemon.bat

ext\windows\environment.bat

ext\windows\mco.bat

ext\windows\README.md

ext\windows\register_service.bat

ext\windows\service_manager.rb

ext\windows\unregister_service.bat

								7	file(s)	copied.

5.	 Make	copies	of	the	configuration	examples	to	customize:
C:\mcollective>cd	etc

C:\mcollective\etc>copy	client.cfg.dist	client.cfg

								1	file(s)	copied.

C:\mcollective\etc>copy	server.cfg.dist	server.cfg

								1	file(s)	copied.

C:\mcollective\etc>copy	facts.yaml.dist	facts.yaml

								1	file(s)	copied.

C:\mcollective\etc>exit

6.	 Use	Notepad++	(or	your	favorite	editor	that	supports	Unix	linefeeds)	to	edit
C:\mcollective\etc\server.cfg	as	follows:

#	ActiveMQ	Server

connector	=	activemq

plugin.activemq.heartbeat_interval	=	30

plugin.activemq.pool.size	=	1

plugin.activemq.pool.1.host	=	activemq.example.net

plugin.activemq.pool.1.port	=	61613

plugin.activemq.pool.1.user	=	server

plugin.activemq.pool.1.password	=	Server	Password

#	Explicitly	indicate	puppet	agent's	location

plugin.puppet.command	=	C:\Program	Files	(x86)\Puppet	

Labs\Puppet\bin\puppet.exe

#	Facts

factsource	=	yaml

plugin.yaml	=	/etc/mcollective/facts.yaml

#	Security	and	Connector	Plugins

securityprovider	=	psk

plugin.psk	=	Pre-Shared	Key

#	MCollective	daemon	settings

libdir	=	C:\mcollective\plugins

logfile	=	C:\mcollective\mcollective.log

loglevel	=	info

https://github.com/puppetlabs/marionette-collective/archive/2.5.3.tar.gz

daemonize	=	1

7.	 Use	Notepad++	(or	your	favorite	editor)	to	edit	C:\mcollective\etc\client.cfg	as
follows:

direct_addressing	=	1

main_collective	=	mcollective

collectives	=	mcollective

#	ActiveMQ	Server

connector	=	activemq

plugin.activemq.heartbeat_interval	=	30

plugin.activemq.pool.size	=	1

plugin.activemq.pool.1.host	=	activemq.example.net

plugin.activemq.pool.1.port	=	61613

plugin.activemq.pool.1.user	=	client

plugin.activemq.pool.1.password	=	Client	Password

#	Explicitly	indicate	puppet	agent's	location

plugin.puppet.command	=	C:\Program	Files	(x86)\Puppet	

Labs\Puppet\bin\puppet.exe

#	Security	and	Connector	Plugins

securityprovider	=	psk

plugin.psk	=	Pre-Shared	Key

#	MCollective	daemon	settings

libdir	=	C:\mcollective\plugins

logger_type	=	console

loglevel	=	warn

8.	 Start	a	Command	Prompt	as	administrator,	as	shown	in	Figure	B-5.

Figure	B-5.	Command	Prompt:	Run	as	administrator

9.	 Enter	the	C:\mcollective\bin\	directory	and	run	register_service.bat:
C:\Windows\system32>cd	\mcollective\bin

C:\mcollective\bin>register_service.bat

Service	mcollectived	installed

C:\mcollective\bin>exit

10.	 Right-click	My	Computer	and	select	Manage.
a.	 Under	“Services	and	Applications,”	expand	Services.
b.	 Find	“The	Marionette	Collective”	and	start	the	service	(Figure	B-6).
c.	 Click	Properties	to	enable	automatic	start	at	boot.

Figure	B-6.	MCollective	Service

11.	 Add	C:\mcollective\bin	to	your	PATH.
12.	 Test!
C:\mcollective\bin>mco	ping

sunstone																																	time=1706.05	ms

heliotrope																															time=1721.68	ms

fireagate																																time=1723.63	ms

geode																																				time=1725.59	ms

tanzanite																																time=1727.54	ms

jade																																					time=1930.66	ms

----	ping	statistics	----

6	replies	max:	1930.66	min:	1706.05	avg:	1755.86

If	you	aren’t	running	Puppet	on	the	Windows	box,	you	may	want	to	add	some	useful	static
facts	to	the	facts.yaml	file.	Here’s	what	I	used	on	my	test	system:

mcollective:	1

architecture:	x86_64

operatingsystem:	Windows

operatingsystemrelease:	"7	Ultimate	SP1"

At	this	point,	you	have	a	fully	working	MCollective	daemon	and	client	on	your	Windows
system.	Aside	from	the	differences	in	the	installed	paths,	every	configuration	option
should	work	identically	to	the	Linux	versions.

Managing	Ruby	Versions	with	RVM
An	easy	way	to	install	and	manage	multiple	versions	of	Ruby	on	Linux	or	Unix
environments	is	to	use	the	Ruby	Version	Manager	(RVM).	

If	your	operating	system	does	not	include	Ruby	in	the	base	OS	libraries,	or	you	wish	to
use	a	different	version,	RVM	is	designed	to	assist	you.	This	large	shell	script	will	set	up
Ruby	on	your	system	in	one	easy	step.	The	only	command	you	need	to	run	is	this:

$	\curl	-L	https://get.rvm.io	|	bash	-s	stable	--ruby=1.9.3

The	backslash	before	curl	is	to	prevent	an	alias	for	curl	from	being	used.	The	output	of
this	command	will	walk	you	through	the	installation.	If	you	want	more	than	a	simple
install	of	Ruby,	you	can	learn	more	about	installing	and	using	RVM	at
https://rvm.io/rvm/install.
12	You	can	track	the	status	of	this	bug	at	MCO-244	Bug.

https://rvm.io/rvm/install
https://tickets.puppetlabs.com/browse/MCO-244

About	the	Author
Jo	Rhett	is	a	network	architect	and	DevOps	engineer	with	20	years	of	experience
conceptualizing	and	delivering	large-scale	Internet	services.	He	focuses	on	creating
automation	and	infrastructure	to	accelerate	deployment	and	minimize	outages.

Jo	has	been	using,	promoting,	and	enhancing	configuration	management	systems	for	over
20	years.	He	builds	improvements	and	plugins	for	CfEngine,	Puppet,	MCollective,	and
many	other	DevOps-related	tools.

Colophon
The	animal	on	the	cover	of	Learning	MCollective	is	an	English	Leicester	sheep,	a	breed
that	is	currently	found	in	Australia,	New	Zealand,	Great	Britain,	and	the	United	States.
These	sheep	can	thrive	in	a	wide	variety	of	climactic	conditions	due	to	their	large	frame
and	heavy	fleece:	rams	average	250	pounds	and	ewes	180	pounds.

The	breed	was	developed	in	the	1700s	by	Robert	Bakewell,	who	was	the	first	to	utilize
modern	animal	breeding	techniques	in	the	selection	of	livestock,	and	even	George
Washington	and	Thomas	Jefferson	brought	Leicester	rams	from	England	to	improve	their
flocks.

The	Leicester	fleece	is	prized	for	its	curl	and	soft	handle,	and	dyes	exceptionally	well.	The
fleece	generally	weighs	from	11	to	15	pounds	with	some	weighing	as	much	as	20	pounds.

These	sheep	are	categorized	now	as	“endangered”	since	fewer	than	500	registered	females
remain	in	the	United	Kindgom.	Breeds	considered	critical	have	fewer	than	200	North
American	annual	registrations	and	an	estimated	global	population	of	less	than	2,000.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Meyers	Kleines	Lexicon.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

1.	 Preface
a.	 Who	This	Book	Is	For
b.	 What	to	Expect	from	Me
c.	 What	You	Will	Need
d.	 What	You’ll	Find	in	This	Book
e.	 How	to	Use	This	Book
f.	 IPv6	Ready
g.	 Conventions	Used	in	This	Book
h.	 Using	Code	Examples
i.	 Safari®	Books	Online
j.	 How	to	Contact	Us
k.	 Acknowledgments

2.	 I.	Getting	Started
a.	 1.	Introduction

i.	 What	Is	MCollective?
ii.	 Why	Parallel	Execution?
iii.	 How	MCollective	Works
iv.	 Why	Use	MCollective
v.	 How	to	Fail	with	MCollective
vi.	 Time	to	Get	Started

3.	 2.	Installation
a.	 Requirements

i.	 Operating	System
ii.	 Middleware	Broker

b.	 Where	to	Install
c.	 Passwords	and	Keys
d.	 Puppet	Labs	Repository

i.	 Supported	Platforms
e.	 Configuring	ActiveMQ

i.	 Install	the	Software
ii.	 Tune	the	Configuration	File
iii.	 Start	the	Service
iv.	 Firewall	Change

f.	 Installing	Servers
i.	 Install	the	Software
ii.	 Server	Configuration	File
iii.	 Start	the	Service

g.	 Creating	a	Client
i.	 Install	the	Software
ii.	 Client	Configuration	File
iii.	 Security	Considerations

h.	 Installing	from	Source
i.	 Using	the	Installer
ii.	 Creating	an	Init	Script
iii.	 Creating	a	Package

i.	 Testing	Your	Installation
j.	 Troubleshooting

i.	 Passwords
ii.	 Networking
iii.	 Connector	Names

4.	 3.	Command-Line	Client
a.	 Configuration	File
b.	 Connector
c.	 Facts
d.	 Inventory

i.	 Inventory	Reports
e.	 Discovery
f.	 Filters

i.	 Combination	Filters
g.	 Limits
h.	 Output
i.	 Classes

i.	 Puppet
ii.	 Chef

j.	 Bash	Completion
5.	 4.	Web	Clients

a.	 Puppet	Enterprise
b.	 mcomaster

6.	 5.	Agent	and	Client	Plugins
a.	 Connector	Plugins
b.	 Installing	Agents	from	Packages
c.	 Installing	Agents	from	Source

i.	 Copy	to	Plugins	Directory
d.	 Notify	mcollectived
e.	 Disabling	Agents
f.	 Using	Client	Plugins
g.	 Finding	Community	Plugins
h.	 Recommended	Plugins

7.	 6.	Maintenance
a.	 Time	Sync

b.	 Keeping	Sessions	Alive
c.	 Activating	Changes
d.	 Server	Statistics
e.	 Logging
f.	 Monitoring	Servers

8.	 7.	Configuration	Management
a.	 Puppet

i.	 Installing	the	Puppet	Module
ii.	 Using	r10k
iii.	 Straight	from	GitHub
iv.	 Configuring	MCollective	Using	Puppet
v.	 Hiera	Configuration	Data
vi.	 Sharing	Facts	with	Puppet
vii.	 Installing	Agents	with	Puppet
viii.	 Validating	the	Installation
ix.	 Debugging

b.	 Chef
i.	 Configuring	MCollective	using	Chef
ii.	 Sharing	Ohai	Data	with	Chef
iii.	 Sharing	Chef	Roles	and	Recipes	as	Classes
iv.	 Installing	Agents	with	Chef
v.	 TLS	Security	Limitations
vi.	 Validating	the	Installation
vii.	 Debugging

9.	 8.	Controlling	Puppet	Agent
a.	 Install	the	Puppet	Agent
b.	 Checking	Puppet	Status
c.	 Controlling	the	Puppet	Daemon
d.	 Invoking	Ad	Hoc	Puppet	Runs
e.	 Manipulating	Puppet	Resource	Types

i.	 Restricting	Which	Resources	Can	Be	Controlled
ii.	 Block	MCollective	from	Puppet	Resources

10.	 9.	Waking	the	Chef
a.	 Install	the	Chef	Agent
b.	 Checking	Chef	Status
c.	 Invoking	Ad	Hoc	Chef	Client	Runs

11.	 II.	Complex	Installations
a.	 10.	Middleware	Configuration

i.	 Messaging	Brokers
ii.	 Network	Security

i.	 Transport	Connectors

ii.	 Firewall	Configurations
iii.	 IPv6	Dual-Stack	Environments
iv.	 ActiveMQ	Config	Structure
v.	 Detailed	Configuration	Review

i.	 Broker	Definition
ii.	 Topic	and	Queue	Tuning
iii.	 Authentication	and	Authorization
iv.	 Transport	Connectors
v.	 Management	Interfaces
vi.	 Conclusion

vi.	 ActiveMQ	Clusters
i.	 Network	of	Brokers
ii.	 Master/Slave	Redundancy
iii.	 Encrypted	Broker	Links
iv.	 Conclusion

vii.	 Large-Scale	Broker	Configurations
i.	 Understanding	MCollective’s	Needs
ii.	 Recommendations	for	Baseline	Tuning
iii.	 Supporting	Thousands	of	Servers
iv.	 Reaching	Globally	Diverse	Servers
v.	 Upgrading	to	ActiveMQ	5.9.1
vi.	 Checking	for	Known	Problems
vii.	 Conclusion

12.	 11.	Middleware	Security
a.	 Anonymous	TLS

i.	 Advantages
ii.	 Disadvantages
iii.	 Puppet	Module	Setup
iv.	 Manual	Setup
v.	 Testing

b.	 CA-Verified	TLS	Servers
i.	 Advantages
ii.	 Disadvantages
iii.	 Setup	Paths
iv.	 TLS	using	Puppet	CA
v.	 TLS	using	Another	CA

c.	 Validate	keyStore	and	trustStore
d.	 CA-Verified	TLS	Clients

i.	 Clients	of	the	Puppet	CA
ii.	 Clients	Using	Another	CA
iii.	 Change	the	Client	Configuration

e.	 Conclusion
13.	 12.	Creating	Collectives

a.	 Deciding	When	to	Create	More
b.	 Collectives	!=	Clustering
c.	 Configuration	Traffic
d.	 Localizing	Traffic
e.	 Limiting	Access
f.	 Conclusion

14.	 13.	MCollective	Security
a.	 How	Authentication	Works
b.	 Pre-Shared	Key	Authentication

i.	 Puppet	Setup
c.	 SSL	Authentication

i.	 Server	Configuration
ii.	 Client	Configuration
iii.	 Key	Synchronization

d.	 RSA	Authentication	AES	Encryption
i.	 Server	Configuration
ii.	 Client	Configuration
iii.	 Key	Synchronization

e.	 SSHKey	Authentication
i.	 Puppet

f.	 Authorization
i.	 Rule	Format
ii.	 Caller	IDs
iii.	 Defining	ActionPolicy	with	Puppet
iv.	 Defining	ActionPolicy	Manually

g.	 Auditing
h.	 Conclusion

15.	 14.	Challenges	of	Worldwide	Parallelism
16.	 III.	Custom	Plugins

a.	 15.	Building	an	Agent
i.	 SimpleRPC	Framework
ii.	 Start	with	a	Baseline
iii.	 Validate	Input
iv.	 Send	Replies
v.	 Define	an	Agent	DDL
vi.	 Read	Config	Files
vii.	 Install	Your	Agent
viii.	 Testing	the	Agent

17.	 16.	Extending	the	Agent
a.	 Executing	Scripts
b.	 Executing	Commands
c.	 Accessing	Facts,	Agents,	and	Classes
d.	 Results	and	Exceptions
e.	 Logging

18.	 17.	Creating	a	Client	Application
a.	 Baseline	Client
b.	 Client	Filters
c.	 Results	and	Exceptions
d.	 Install	Your	Client

19.	 18.	Processing	Multiple	Actions
20.	 19.	Making	a	Standalone	Client

a.	 Baseline	Client	Program
b.	 Running	Your	Program

21.	 20.	Creating	Other	Plugins
a.	 Authorization	Plugins
b.	 Facts	Plugins

22.	 21.	Processing	Registration	Data
a.	 Registration	Agent
b.	 Registration	Collector
c.	 Registration	and	SSL	Security

23.	 22.	Collecting	Responses
a.	 Create	a	Listener
b.	 Submit	reply-to
c.	 Process	Responses

24.	 23.	Running	MCollective	Without	Root
25.	 24.	Downloading	the	Code
26.	 IV.	Putting	It	All	Together

a.	 25.	Use	Best	Practices
i.	 Make	Use	of	Configuration	Management
ii.	 Choose	the	Best	Discovery	Method
iii.	 Authorize	and	Audit	Each	Request

27.	 26.	Grow	Your	Deployment
a.	 Consider	the	Strings	Analogy
b.	 Utilize	Support	Resources
c.	 Read	Blogs

28.	 Take	the	Strings	Now
29.	 A.	Tips	and	Tools

a.	 Useful	Commands	Reference

b.	 Using	r10k	to	install	Puppet	Modules
c.	 Using	the	PuppetLabs	MCollective	Module
d.	 Using	RabbitMQ

i.	 Installing	RabbitMQ
ii.	 Configuring	RabbitMQ	with	Puppet
iii.	 Configuring	RabbitMQ	Manually
iv.	 Using	an	Exchange	with	a	RabbitMQ	Federation

30.	 B.	OS	Specifics
a.	 Configuring	Debian	and	Ubuntu	Firewalls
b.	 FreeBSD

i.	 Using	the	Next	Generation	Package	Manager
ii.	 Configuring	ActiveMQ
iii.	 Configuring	the	Firewall
iv.	 Installing	Agents

c.	 Mac	OS	X
i.	 Installing	Ruby
ii.	 Installing	MCollective

d.	 Solaris
i.	 Installing	on	Solaris	11
ii.	 Installing	on	Solaris	10	and	Before

e.	 Windows
i.	 Acquiring	Ruby
ii.	 Adding	the	RubyGem	Dependencies
iii.	 Installing	MCollective

f.	 Managing	Ruby	Versions	with	RVM
31.	 Index

	Preface
	Who This Book Is For
	What to Expect from Me
	What You Will Need
	What You’ll Find in This Book
	How to Use This Book
	IPv6 Ready
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Getting Started
	1. Introduction
	What Is MCollective?
	Why Parallel Execution?
	How MCollective Works
	Why Use MCollective
	How to Fail with MCollective
	Time to Get Started

	2. Installation
	Requirements
	Operating System
	Middleware Broker

	Where to Install
	Passwords and Keys
	Puppet Labs Repository
	Supported Platforms
	Enterprise Linux 6
	Enterprise Linux 5
	Fedora
	Debian and Ubuntu
	Other platforms

	Configuring ActiveMQ
	Install the Software
	Tune the Configuration File
	Enable purging in the broker
	Disable producerFlowControl
	Define logins for clients and servers in simpleAuthenticationPlugin
	Define permissions for clients and servers in authorizationPlugins
	Transports
	Disable the web console

	Start the Service
	Firewall Change

	Installing Servers
	Install the Software
	Server Configuration File
	Start the Service

	Creating a Client
	Install the Software
	Client Configuration File
	Security Considerations

	Installing from Source
	Using the Installer
	Creating an Init Script
	Creating a Package

	Testing Your Installation
	Troubleshooting
	Passwords
	Networking
	Connector Names

	3. Command-Line Client
	Configuration File
	Connector
	Facts
	Inventory
	Inventory Reports

	Discovery
	Filters
	Combination Filters

	Limits
	Output
	Classes
	Puppet
	Chef

	Bash Completion

	4. Web Clients
	Puppet Enterprise
	mcomaster

	5. Agent and Client Plugins
	Connector Plugins
	Installing Agents from Packages
	Installing Agents from Source
	Copy to Plugins Directory

	Notify mcollectived
	Disabling Agents
	Using Client Plugins
	Finding Community Plugins
	Recommended Plugins

	6. Maintenance
	Time Sync
	Keeping Sessions Alive
	Activating Changes
	Server Statistics
	Logging
	Monitoring Servers

	7. Configuration Management
	Puppet
	Installing the Puppet Module
	Using r10k
	Straight from GitHub
	Configuring MCollective Using Puppet
	Hiera Configuration Data
	Sharing Facts with Puppet
	Installing Agents with Puppet
	Validating the Installation
	Debugging
	Unable to match server with class
	Unable to match server with fact
	Unable to match server by hostname

	Chef
	Configuring MCollective using Chef
	Sharing Ohai Data with Chef
	Sharing Chef Roles and Recipes as Classes
	Installing Agents with Chef
	TLS Security Limitations
	Validating the Installation
	Debugging
	Unable to match server with class
	Unable to match server with fact

	8. Controlling Puppet Agent
	Install the Puppet Agent
	Checking Puppet Status
	Controlling the Puppet Daemon
	Invoking Ad Hoc Puppet Runs
	Manipulating Puppet Resource Types
	Restricting Which Resources Can Be Controlled
	Block MCollective from Puppet Resources

	9. Waking the Chef
	Install the Chef Agent
	Checking Chef Status
	Invoking Ad Hoc Chef Client Runs

	II. Complex Installations
	10. Middleware Configuration
	Messaging Brokers
	Network Security
	Transport Connectors
	Firewall Configurations

	IPv6 Dual-Stack Environments
	ActiveMQ Config Structure
	Detailed Configuration Review
	Broker Definition
	Topic and Queue Tuning
	Authentication and Authorization
	Users and groups
	Topics and queues the clients send to
	Topics and queues the servers read from
	Topics and queues the servers write to

	Transport Connectors
	Management Interfaces
	Web Console
	Jolokia API and HawtIO
	JMX MBean Console
	Statistics plugin

	Conclusion

	ActiveMQ Clusters
	Network of Brokers
	Master/Slave Redundancy
	Encrypted Broker Links
	Conclusion

	Large-Scale Broker Configurations
	Understanding MCollective’s Needs
	Recommendations for Baseline Tuning
	Supporting Thousands of Servers
	Reaching Globally Diverse Servers
	Upgrading to ActiveMQ 5.9.1
	Checking for Known Problems
	Conclusion

	11. Middleware Security
	Anonymous TLS
	Advantages
	Disadvantages
	Puppet Module Setup
	Manual Setup
	Create a TLS keypair
	Create a Java keyStore
	Configure the middleware to use the keystore
	Configure the client and server by hand

	Testing

	CA-Verified TLS Servers
	Advantages
	Disadvantages
	Setup Paths
	TLS using Puppet CA
	Puppet one-step process
	Create a Java trustStore by hand
	Create a Java keyStore by hand
	Configure the broker by hand
	Configure the MCollective server by hand

	TLS using Another CA
	Create a new Certificate Authority (optional)
	Create a Java trustStore from the Certificate Authority
	Create a TLS Keypair for every server
	Create a Java keyStore
	Configure the broker to use the stores we made
	Configure the MCollective server by hand

	Validate keyStore and trustStore
	CA-Verified TLS Clients
	Clients of the Puppet CA
	Create a Puppet keypair on the client node
	Change the client configuration

	Clients Using Another CA
	Create a keypair for each client
	Sign the certificate request

	Change the Client Configuration

	Conclusion

	12. Creating Collectives
	Deciding When to Create More
	Collectives != Clustering
	Configuration Traffic
	Localizing Traffic
	Limiting Access
	Conclusion

	13. MCollective Security
	How Authentication Works
	Pre-Shared Key Authentication
	Puppet Setup

	SSL Authentication
	Server Configuration
	Installing and synchronizing with Puppet

	Client Configuration
	Create a client identity
	Create a config file

	Key Synchronization

	RSA Authentication AES Encryption
	Server Configuration
	Puppet module
	Manual config

	Client Configuration
	Create a client identity
	Create a config file

	Key Synchronization

	SSHKey Authentication
	Puppet

	Authorization
	Rule Format
	Caller IDs
	Defining ActionPolicy with Puppet
	Creating a simple policy in Hiera
	Allowing more commands
	Distributing policy files

	Defining ActionPolicy Manually

	Auditing
	Conclusion

	14. Challenges of Worldwide Parallelism
	III. Custom Plugins
	15. Building an Agent
	SimpleRPC Framework
	Start with a Baseline
	Validate Input
	Send Replies
	Define an Agent DDL
	Read Config Files
	Install Your Agent
	Testing the Agent

	16. Extending the Agent
	Executing Scripts
	Executing Commands
	Accessing Facts, Agents, and Classes
	Results and Exceptions
	Logging

	17. Creating a Client Application
	Baseline Client
	Client Filters
	Results and Exceptions
	Install Your Client

	18. Processing Multiple Actions
	19. Making a Standalone Client
	Baseline Client Program
	Running Your Program

	20. Creating Other Plugins
	Authorization Plugins
	Facts Plugins

	21. Processing Registration Data
	Registration Agent
	Registration Collector
	Registration and SSL Security

	22. Collecting Responses
	Create a Listener
	Submit reply-to
	Process Responses

	23. Running MCollective Without Root
	24. Downloading the Code
	IV. Putting It All Together
	25. Use Best Practices
	Make Use of Configuration Management
	Choose the Best Discovery Method
	Authorize and Audit Each Request

	26. Grow Your Deployment
	Consider the Strings Analogy
	Utilize Support Resources
	Read Blogs

	Take the Strings Now
	A. Tips and Tools
	Useful Commands Reference
	Using r10k to install Puppet Modules
	Using the PuppetLabs MCollective Module
	Using RabbitMQ
	Installing RabbitMQ
	Enable the STOMP connector and management plugins
	Start the server
	Install the CLI tool

	Configuring RabbitMQ with Puppet
	Configuring RabbitMQ Manually
	Using an Exchange with a RabbitMQ Federation

	B. OS Specifics
	Configuring Debian and Ubuntu Firewalls
	FreeBSD
	Using the Next Generation Package Manager
	Configuring ActiveMQ
	Configuring the Firewall
	Installing Agents

	Mac OS X
	Installing Ruby
	Installing MCollective

	Solaris
	Installing on Solaris 11
	Installing on Solaris 10 and Before

	Windows
	Acquiring Ruby
	Adding the RubyGem Dependencies
	Installing MCollective

	Managing Ruby Versions with RVM

	Index

